


How can I implement fuzzy matching for email addresses and telephone numbers in Elasticsearch?
Oct 28, 2024 pm 04:25 PMFuzzy Matching for Email and Telephone in Elasticsearch
Elasticsearch provides robust capabilities for implementing fuzzy matching, allowing you to search for email addresses or telephone numbers that partially match a given value. Here's how to achieve this goal efficiently:
1. Employ Custom Analyzers
To optimize performance, create custom analyzers for email addresses (index_email_analyzer, search_email_analyzer) and telephone numbers (index_phone_analyzer, search_phone_analyzer). These analyzers use specific tokenizers and filters to break down input values into relevant tokens.
2. Index Data with Index Analyzers
When indexing data, utilize the custom index analyzers to process email and telephone values. This ensures that the data is stored in a tokenized form suitable for fuzzy matching.
3. Search with Search Analyzers
During search operations, employ the custom search analyzers to tokenize input search parameters. This allows Elasticsearch to compare the tokenized search parameters against the tokenized data, identifying even partial matches.
4. Example Index Definition
Here's an example of an index definition with the necessary analyzers for fuzzy matching of email and telephone numbers:
<code class="json">{ "settings": { "analysis": { "analyzer": { "email_url_analyzer": { "type": "custom", "tokenizer": "uax_url_email", "filter": [ "trim" ] }, "index_phone_analyzer": { "type": "custom", "char_filter": [ "digit_only" ], "tokenizer": "digit_edge_ngram_tokenizer", "filter": [ "trim" ] }, "search_phone_analyzer": { "type": "custom", "char_filter": [ "digit_only" ], "tokenizer": "keyword", "filter": [ "trim" ] }, "index_email_analyzer": { "type": "custom", "tokenizer": "standard", "filter": [ "lowercase", "name_ngram_filter", "trim" ] }, "search_email_analyzer": { "type": "custom", "tokenizer": "standard", "filter": [ "lowercase", "trim" ] } }, "char_filter": { "digit_only": { "type": "pattern_replace", "pattern": "\D+", "replacement": "" } }, "tokenizer": { "digit_edge_ngram_tokenizer": { "type": "edgeNGram", "min_gram": "1", "max_gram": "15", "token_chars": [ "digit" ] } }, "filter": { "name_ngram_filter": { "type": "ngram", "min_gram": "1", "max_gram": "20" } } } }, "mappings": { "your_type": { "properties": { "email": { "type": "string", "analyzer": "index_email_analyzer", "search_analyzer": "search_email_analyzer" }, "phone": { "type": "string", "analyzer": "index_phone_analyzer", "search_analyzer": "search_phone_analyzer" } } } } }</code>
5. Example Queries
To perform fuzzy matches, utilize the term query:
<code class="json">{ "query": { "term": { "phone": "136" } } }</code>
<code class="json">{ "query": { "term": { "email": "@gmail.com" } } }</code>
This solution offers efficient and accurate fuzzy matching for email addresses and telephone numbers, empowering you to easily retrieve data based on partial or incomplete input.
The above is the detailed content of How can I implement fuzzy matching for email addresses and telephone numbers in Elasticsearch?. For more information, please follow other related articles on the PHP Chinese website!

Hot Article

Hot tools Tags

Hot Article

Hot Article Tags

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Reduce the use of MySQL memory in Docker

How do you alter a table in MySQL using the ALTER TABLE statement?

How to solve the problem of mysql cannot open shared library

What is SQLite? Comprehensive overview

Run MySQl in Linux (with/without podman container with phpmyadmin)

Running multiple MySQL versions on MacOS: A step-by-step guide

What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)?

How do I configure SSL/TLS encryption for MySQL connections?
