Home > Backend Development > Python Tutorial > How do you replace NaN values in a pandas DataFrame with the average of each corresponding column?

How do you replace NaN values in a pandas DataFrame with the average of each corresponding column?

Susan Sarandon
Release: 2024-10-28 18:17:30
Original
447 people have browsed it

How do you replace NaN values in a pandas DataFrame with the average of each corresponding column?

Replace NaN Values with Column Averages in a pandas DataFrame

In a pandas DataFrame, NaN values can arise, necessitating the replacement with appropriate values for data analysis. This article addresses the challenge of replacing NaNs with the average of each corresponding column.

Unlike a numpy array, a pandas DataFrame cannot directly apply the averaging technique used for a numpy array. Instead, the DataFrame.fillna method provides a straightforward solution.

Using DataFrame.fillna

To fill NaN values with the column mean, use the following code:

<code class="python">import pandas as pd

# Create a DataFrame with NaN values
df = pd.DataFrame({
    'A': [-0.166919, -0.297953, -0.120211, np.nan, np.nan, -0.788073, -0.916080, -0.887858, 1.948430, 0.019698],
    'B': [0.979728, -0.912674, -0.540679, -2.027325, np.nan, np.nan, -0.612343, 1.033826, 1.025011, -0.795876],
    'C': [-0.632955, -1.365463, -0.680481, 1.533582, 0.461821, np.nan, np.nan, np.nan, -2.982224, -0.046431]
})

print("Original DataFrame with NaN values:")
print(df)

# Calculate column means
column_means = df.mean()
print("\nColumn means:")
print(column_means)

# Replace NaN values with column means
df_filled = df.fillna(column_means)
print("\nDataFrame with NaN values replaced by column means:")
print(df_filled)</code>
Copy after login

Example:

Consider the following DataFrame with NaN values:

          A         B         C
0 -0.166919  0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3       NaN -2.027325  1.533582
4       NaN       NaN  0.461821
5 -0.788073       NaN       NaN
6 -0.916080 -0.612343       NaN
7 -0.887858  1.033826       NaN
8  1.948430  1.025011 -2.982224
9  0.019698 -0.795876 -0.046431
Copy after login

Using DataFrame.fillna, the NaN values are replaced with the column means:

           A          B          C
0  -0.166919   0.979728  -0.632955
1  -0.297953  -0.912674  -1.365463
2  -0.120211  -0.540679  -0.680481
3  -0.151121  -2.027325   1.533582
4  -0.151121  -0.231291   0.461821
5  -0.788073  -0.231291  -0.530307
6  -0.916080  -0.612343  -0.530307
7  -0.887858   1.033826  -0.530307
8   1.948430   1.025011  -2.982224
9   0.019698  -0.795876  -0.046431
Copy after login

Therefore, the NaN values have been replaced with the appropriate column averages.

The above is the detailed content of How do you replace NaN values in a pandas DataFrame with the average of each corresponding column?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template