


How to Implement Multiprocessing-Aware Logging in Python: A Queue-Based Solution?
How to Implement Multiprocessing-Aware Logging in Python
Multiprocessing in Python allows the creation of multiple processes that run independently. However, accessing shared resources like log files can become complex as multiple processes may attempt to write to them simultaneously.
To avoid this issue, the Python multiprocessing module provides module-level multiprocessing-aware logging capabilities. This enables the logger to prevent garbling of log messages by ensuring that only one process writes to a specific file descriptor at a time.
However, existing modules within the framework may not be multiprocessing-aware, leading to the need for alternative solutions. One approach involves creating a custom log handler that sends logging messages to the parent process via a pipe.
An implementation of this approach is provided below:
from logging.handlers import RotatingFileHandler import multiprocessing, threading, logging, sys, traceback class MultiProcessingLog(logging.Handler): def __init__(self, name, mode, maxsize, rotate): logging.Handler.__init__(self) # Set up the file handler for the parent process self._handler = RotatingFileHandler(name, mode, maxsize, rotate) # Create a queue to receive log messages from child processes self.queue = multiprocessing.Queue(-1) # Start a thread in the parent process to receive and log messages t = threading.Thread(target=self.receive) t.daemon = True t.start() def receive(self): while True: try: # Get a log record from the queue record = self.queue.get() # Log the record using the parent process's file handler self._handler.emit(record) # Exit the thread if an exception is raised except (KeyboardInterrupt, SystemExit): raise except EOFError: break except: traceback.print_exc(file=sys.stderr) def send(self, s): # Put the log record into the queue for the receiving thread self.queue.put_nowait(s) def _format_record(self, record): # Stringify any objects in the record to ensure that they can be sent over the pipe if record.args: record.msg = record.msg % record.args record.args = None if record.exc_info: dummy = self.format(record) record.exc_info = None return record def emit(self, record): try: # Format and send the log record through the pipe s = self._format_record(record) self.send(s) except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) def close(self): # Close the file handler and the handler itself self._handler.close() logging.Handler.close(self)
This custom log handler allows modules within the framework to use standard logging practices without having to be multiprocessing-aware themselves. The log messages are sent from the child processes to the parent process via a pipe, ensuring that they are not garbled and written correctly to the log file.
The above is the detailed content of How to Implement Multiprocessing-Aware Logging in Python: A Queue-Based Solution?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...
