


How do you dynamically parse YAML fields into specific structs in Go without using an intermediate map?
Dynamically Parsing YAML Fields to Specific Structs in Go
Determining the optimal approach to dynamically parse YAML fields into predefined structs can be a common challenge in Go. Let's examine the provided scenario and explore the best options available.
The Challenge
Given YAML files with varying content and a set of structs representing different data types, the goal is to dynamically parse these fields into the appropriate structs. The provided approach involves using an intermediate map, but a more elegant solution is sought.
Solution
Utilizing the YAML v2.1.0 Yaml parser, here's an improved approach:
<code class="go">type yamlNode struct { unmarshal func(interface{}) error } func (n *yamlNode) UnmarshalYAML(unmarshal func(interface{}) error) error { n.unmarshal = unmarshal return nil } type Spec struct { Kind string `yaml:"kind"` Spec interface{} `yaml:"-"` }</code>
<code class="go">func (s *Spec) UnmarshalYAML(unmarshal func(interface{}) error) error { type S Spec type T struct { S `yaml:",inline"` Spec yamlNode `yaml:"spec"` } obj := &T{} if err := unmarshal(obj); err != nil { return err } *s = Spec(obj.S) switch s.Kind { case "foo": s.Spec = new(Foo) case "bar": s.Spec = new(Bar) default: panic("kind unknown") } return obj.Spec.unmarshal(s.Spec) }</code>
This solution elegantly handles the dynamic parsing by embedding the struct's kind and spec field in the T type. The yamlNode type facilitates the unmarshaling of the Spec interface, allowing for the selection of the appropriate concrete struct.
Updated Approaches for YAML v3
For YAML v3, a similar approach can be used, with minor adjustments:
<code class="go">type Spec struct { Kind string `yaml:"kind"` Spec interface{} `yaml:"-"` }</code>
<code class="go">func (s *Spec) UnmarshalYAML(n *yaml.Node) error { type S Spec type T struct { *S `yaml:",inline"` Spec yaml.Node `yaml:"spec"` } obj := &T{S: (*S)(s)} if err := n.Decode(obj); err != nil { return err } switch s.Kind { case "foo": s.Spec = new(Foo) case "bar": s.Spec = new(Bar) default: panic("kind unknown") } return obj.Spec.Decode(s.Spec) }</code>
These updated approaches provide a more direct and efficient method for dynamically parsing YAML fields into the desired struct types without the need for intermediate maps or additional steps.
The above is the detailed content of How do you dynamically parse YAML fields into specific structs in Go without using an intermediate map?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The article discusses the go fmt command in Go programming, which formats code to adhere to official style guidelines. It highlights the importance of go fmt for maintaining code consistency, readability, and reducing style debates. Best practices fo
