Replacing Blank Values (White Space) with NaN in Pandas
How can you efficiently replace blank values (whitespace) with NaN in a Pandas dataframe?
Initial Approach:
The following code is capable of replacing blank values with None, but it is inefficient and not the most Pythonic solution:
<code class="python">for i in df.columns: df[i][df[i].apply(lambda i: True if re.search('^\s*$', str(i)) else False)] = None</code>
Optimal Solution:
Pandas offers a more concise and efficient solution through the df.replace() method:
<code class="python">df = pd.DataFrame([ [-0.532681, 'foo', 0], [1.490752, 'bar', 1], [-1.387326, 'foo', 2], [0.814772, 'baz', ' '], [-0.222552, ' ', 4], [-1.176781, 'qux', ' '], ], columns='A B C'.split(), index=pd.date_range('2000-01-01','2000-01-06')) # replace field that's entirely space (or empty) with NaN print(df.replace(r'^\s*$', np.nan, regex=True))</code>
This code replaces blank values (regular expressions: ^s*$) with NaN, producing the desired output:
A B C 2000-01-01 -0.532681 foo 0 2000-01-02 1.490752 bar 1 2000-01-03 -1.387326 foo 2 2000-01-04 0.814772 baz NaN 2000-01-05 -0.222552 NaN 4 2000-01-06 -1.176781 qux NaN
Note:
If you need to handle valid data that may contain white spaces, you can modify the regular expression to r'^s $', which only matches fields consisting entirely of white space.
The above is the detailed content of How to Replace Empty Strings (Whitespace) with NaN in a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!