


Why does `sync.Once` use `atomic.StoreUint32` instead of a regular assignment for the `done` flag?
AtomicStoreUint32 vs. Assignment in Sync.Once
While exploring the source code for Go's sync.Once type, a question arises regarding the usage of atomic.StoreUint32 versus a regular assignment for setting the done flag.
Incorrect Implementation:
The original source code contained an incorrect implementation:
<code class="go">func (o *Once) Do(f func()) { if atomic.CompareAndSwapUint32(&o.done, 0, 1) { f() } }</code>
This implementation fails to guarantee that f is complete when the function returns. Simultaneous calls could lead to the winner executing f while the second caller returns immediately, assuming the first call is complete, which may not be the case.
Correct Implementation:
To rectify this issue, the current implementation employs atomic.StoreUint32 in conjunction with a mutex:
<code class="go">func (o *Once) Do(f func()) { if atomic.LoadUint32(&o.done) == 0 { o.doSlow(f) } }</code>
<code class="go">func (o *Once) doSlow(f func()) { o.m.Lock() defer o.m.Unlock() if o.done == 0 { defer atomic.StoreUint32(&o.done, 1) f() } }</code>
Why AtomicStoreUint32?
The use of atomic.StoreUint32 is necessary to ensure that other goroutines can observe the change to o.done after f completes. While primitive assignments may be atomic on certain architectures, Go's memory model requires the use of the atomic package to guarantee atomic operations across all supported architectures.
Access to Done Flag:
The goal is to ensure that access to the done flag is safe outside of the mutex. Therefore, atomic operations are utilized instead of locking with a mutex. This optimization enhances the efficiency of the fast path, enabling sync.Once to be deployed in high-traffic scenarios.
Mutex for doSlow:
The mutex within doSlow ensures that only one caller executes f before o.done is set. atomic.StoreUint32 is used to write the flag because it may occur concurrently with atomic.LoadUint32 outside the mutex's critical section.
Concurrent Writes vs. Reads:
Directly reading o.done in doSlow is safe due to the mutex protection. Additionally, reading o.done concurrently with atomic.LoadUint32 is safe because both operations involve reading only.
The above is the detailed content of Why does `sync.Once` use `atomic.StoreUint32` instead of a regular assignment for the `done` flag?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...
