Building your own Interactive Line Graph in ReactJS
Basic SVG Component
First, let's create a simple SVG component that accepts width and height as props. This will be the starting point for our graph.
import React from "react"; const LineGraph = ({ height, width }) => { return <svg height={height} width={width}></svg>; }; export default LineGraph;
Adding the X-Axis
Now, let's add the X-axis, which runs horizontally across the graph. We’ll use the
const drawXAxis = () => { const middleY = height / 2; return ( <line x1={0} y1={middleY} x2={width} y2={middleY} stroke={lineColor} /> ); };
Adding the Y-Axis
We’ll use another
const drawYAxis = () => { const middleX = width / 2; return ( <line x1={middleX} y1={0} x2={middleX} y2={height} stroke={lineColor} /> ); };
Plotting coordinates as a line path
The key part of a line graph is the line connecting different points. Let's plot some sample coordinates and connect them using an SVG .
const drawPath = () => { const pathData = coordinates .map((coordinate, index) => index === 0 ? `M ${coordinate.x} ${coordinate.y}` : `L ${coordinate.x} ${coordinate.y}` ) .join(" "); return <path d={pathData} stroke={pathColor} fill="none" />; };
Option to fill area beneath the line
We can fill the area beneath the line with a color to enhance the graph. This can be done using an additional element. Consider prop isFillArea to show/hide this area.
const drawPath = () => { const pathData = coordinates .map((coordinate, index) => index === 0 ? `M ${coordinate.x} ${coordinate.y}` : `L ${coordinate.x} ${coordinate.y}` ) .join(" "); const middleY = height / 2; const svgPath = showFillArea ? `${pathData} L ${width} ${middleY} L 0 ${middleY} Z` : pathData; const fillColor = showFillArea ? areaColor : "none"; return ( <path d={svgPath} fill={fillColor} stroke={pathColor} opacity="0.5" /> ); };
Tracking the cursor
Let’s add a circle that follows the cursor's movement across the graph path.
We will need a reference of our SVG component to access the bounding box of the SVG element. Also a reference for our tracking-circle that will be used for tracking the cursor over the graph.
const svgRef = useRef(); const circleRef = useRef(); // ... const drawTrackingCircle = () => { return ( <circle ref={circleRef} r={6} fill="red" style={{ display: "none" }} // Initially hidden /> ); }; // ... <svg ref={svgRef} width={width} height={height}> // ... </svg>
Then, we need to add an event listener to our SVG element. This will listen to all our cursor movements over the graph.
useEffect(() => { const svgElement = svgRef.current; svgElement.addEventListener("mousemove", handleMouseMove); // clean up return () => svgElement.removeEventListener("mousemove", handleMouseMove); }, []);
Next, we need a method to find the intersection coordinate between the cursor position and the path.
const getIntersectionPoint = (cursorX) => { // Find the segment (p1, p2) where cursorX lies between two consecutive coordinates. const segment = coordinates.find((p1, i) => { // Get the next point const p2 = coordinates[i + 1]; // Check if cursorX falls between the two coordinates horizontally. return ( p2 && ((p1.x <= cursorX && p2.x >= cursorX) || (p1.x >= cursorX && p2.x <= cursorX)) ); }); // Return null if no valid segment is found. if (!segment) return null; // Destructure the two coordinates in the segment. const [p1, p2] = [segment, coordinates[coordinates.indexOf(segment) + 1]]; // Calculate 't' to determine the relative position between p1 and p2. const t = (cursorX - p1.x) / (p2.x - p1.x); // Interpolate the Y-coordinate using 't'. const y = p1.y + t * (p2.y - p1.y); return { x: cursorX, y }; };
Cursor movement tracker method. It uses the getIntersectionPoint method to find the current intersection coordinate.
const handleMouseMove = (event) => { // Get SVG position const svgRect = svgRef.current.getBoundingClientRect(); // Calculate cursor's X within the SVG const cursorX = event.clientX - svgRect.left; // Find the intersection point const intersectionPoint = getIntersectionPoint(cursorX); if (intersectionPoint) { // Move the intersection circle to the calculated point circleRef.current.setAttribute("cx", intersectionPoint.x); circleRef.current.setAttribute("cy", intersectionPoint.y); circleRef.current.style.display = "block"; } };
Finally, this would be the structure of our graph component
return ( <svg ref={svgRef} height={height} width={width}> {drawPath()} {drawXAxis()} {drawYAxis()} {drawTrackingCircle()} {drawDataPointCircles()} </svg> );
This is how we can use our Graph component
<LineGraph width={300} height={400} coordinates={samplePoints} lineColor="#000" pathColor="#00008B" areaColor="#ADD8E6" dataPointColor="#008000" showFillArea showDataPointCircle />
Codesandbox link for the LineGraph demo
Blog Photo by Isaac Smith on Unsplash
Thanks for reading ❤
The above is the detailed content of Building your own Interactive Line Graph in ReactJS. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.
