Splitting a Vector Column into Rows in PySpark
In PySpark, splitting a column containing vector values into separate columns for each dimension is a common task. This article will guide you through different approaches to achieve this:
Spark 3.0.0 and Above
Spark 3.0.0 introduced the vector_to_array function, simplifying this process:
<code class="python">from pyspark.ml.functions import vector_to_array df = df.withColumn("xs", vector_to_array("vector"))</code>
You can then select the desired columns:
<code class="python">df.select(["word"] + [col("xs")[i] for i in range(3)])</code>
Spark Less Than 3.0.0
Approach 1: Converting to RDD
<code class="python">def extract(row): return (row.word, ) + tuple(row.vector.toArray().tolist()) df.rdd.map(extract).toDF(["word"]) # Vector values will be named _2, _3, ...</code>
Approach 2: Using a UDF
<code class="python">from pyspark.sql.functions import udf, col from pyspark.sql.types import ArrayType, DoubleType def to_array(col): def to_array_(v): return v.toArray().tolist() return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col) df = df.withColumn("xs", to_array(col("vector")))</code>
Select the desired columns:
<code class="python">df.select(["word"] + [col("xs")[i] for i in range(3)])</code>
By implementing any of these methods, you can effectively split a vector column into individual columns, making it easier to work with and analyze your data.
The above is the detailed content of How to Split a Vector Column into Rows in PySpark?. For more information, please follow other related articles on the PHP Chinese website!