Home Backend Development C++ How does C arrange objects in memory, and what does it mean for dynamic casting and reinterpreting?

How does C arrange objects in memory, and what does it mean for dynamic casting and reinterpreting?

Nov 02, 2024 am 03:52 AM

How does C   arrange objects in memory, and what does it mean for dynamic casting and reinterpreting?

Memory layout of C objects

Question:

How is C arranged in memory? Object? I heard that dynamic cast only adjusts the pointer of the object in memory, with offset; while reinterpretation allows us to do any operation on this pointer. I don't quite understand. Please provide details!

Answer:

Memory layout

Memory layout mainly depends on the implementation. There is one key exception, which is that member variables with the same access specifier will be arranged in declaration order.

§ 9.2.14

非静态数据成员(非联合)具有相同访问控制权的类(Clause 11)被分配,以便后续成员在类对象中具有更高的地址。具有不同访问控制权的非静态数据成员的分配顺序未指定(11)。实现对齐要求可能导致两个相邻成员不会立即相互分配;管理虚拟函数(10.3)和虚拟基类(10.1)的空间要求也可能导致这种情况。
Copy after login

Other memory management

In addition to member variables, a class or structure also needs to manage member variables, sub-objects of the base class, virtual functions (such as virtual table) and the space provided for the padding and alignment of this data. It depends on the implementation, but the Itanium ABI specification is a popular choice. gcc and clang follow it (at least to some extent).

http://mentorembedded.github.io/cxx-abi/abi.html#layout
Copy after login

Itanium ABI

Of course, the Itanium ABI is not part of the C standard and is not binding. For more detailed information, you'll need to consult the implementer's documentation and tools. clang provides a tool to view the memory layout of a class. For example, the following:

class VBase {
    virtual void corge();
    int j;
};

class SBase1 {
    virtual void grault();
    int k;
};

class SBase2 {
    virtual void grault();
    int k;
};

class SBase3 {
    void grault();
    int k;
};

class Class : public SBase1, SBase2, SBase3, virtual VBase {
public:
    void bar();
    virtual void baz();
    // 不允许虚拟成员函数模板,原因考虑内存布局和虚表
    // template<typename T>
    // virtual void quux();
private:
    int i;
    char c;
public:
    float f;
private:
    double d;
public:
    short s;
};

class Derived : public Class {
    virtual void qux();
};

int main() {
    return sizeof(Derived);
}
Copy after login

After creating a source file that uses a class memory layout, clang will display the memory layout.

$ clang -cc1 -fdump-record-layouts layout.cpp
Copy after login

Layout of Class:

*** Dumping AST Record Layout
   0 | class Class
   0 |   class SBase1 (primary base)
   0 |     (SBase1 vtable pointer)
   8 |     int k
  16 |   class SBase2 (base)
  16 |     (SBase2 vtable pointer)
  24 |     int k
  28 |   class SBase3 (base)
  28 |     int k
  32 |   int i
  36 |   char c
  40 |   float f
  48 |   double d
  56 |   short s
  64 |   class VBase (virtual base)
  64 |     (VBase vtable pointer)
  72 |     int j
     | [sizeof=80, dsize=76, align=8
     |  nvsize=58, nvalign=8]
Copy after login

More memory layout information

More about this clang Information about the feature can be found on Eli Bendersky's blog:

http://eli.thegreenplace.net/2012/12/17/dumping-a-c-objects-memory-layout-with-clang/
Copy after login

gcc provides a similar tool `-fdump-class-hierarchy'. For the class given above, it outputs (among other things):

Class Class
   size=80 align=8
   base size=58 base align=8
Class (0x0x141f81280) 0
    vptridx=0u vptr=((&amp; Class::_ZTV5Class) + 24u)
  SBase1 (0x0x141f78840) 0
      primary-for Class (0x0x141f81280)
  SBase2 (0x0x141f788a0) 16
      vptr=((&amp; Class::_ZTV5Class) + 56u)
  SBase3 (0x0x141f78900) 28
  VBase (0x0x141f78960) 64 virtual
      vptridx=8u vbaseoffset=-24 vptr=((&amp; Class::_ZTV5Class) + 88u)
Copy after login

It doesn't itemize the member variables (or at least I don't know how to get them), but you can see that they have to Located between offset 28 and 64, just like in clang layout.

You can see that a base class is designated as primary. This eliminates the need for this pointer adjustment when the Class is accessed as SBase1.

Other compiler directives

The following equivalent directives apply to different compilers:

  • gcc: $ g -fdump-class- hierarchy -c layout.cpp
  • Visual C: cl main.cpp /c /d1reportSingleClassLayoutTest_A

See: https://blogs.msdn.microsoft.com/vcblog/2007/ 05/17/diagnosing-hidden-odr-violations-in-visual-c-and-fixing-lnk2022/

The above is the detailed content of How does C arrange objects in memory, and what does it mean for dynamic casting and reinterpreting?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1242
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The Future of C   and XML: Emerging Trends and Technologies The Future of C and XML: Emerging Trends and Technologies Apr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The Continued Use of C  : Reasons for Its Endurance The Continued Use of C : Reasons for Its Endurance Apr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C# vs. C  : Learning Curves and Developer Experience C# vs. C : Learning Curves and Developer Experience Apr 18, 2025 am 12:13 AM

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C   and XML: Exploring the Relationship and Support C and XML: Exploring the Relationship and Support Apr 21, 2025 am 12:02 AM

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

Modern C   Design Patterns: Building Scalable and Maintainable Software Modern C Design Patterns: Building Scalable and Maintainable Software Apr 09, 2025 am 12:06 AM

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

The C   Community: Resources, Support, and Development The C Community: Resources, Support, and Development Apr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

Beyond the Hype: Assessing the Relevance of C   Today Beyond the Hype: Assessing the Relevance of C Today Apr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

See all articles