Home > Backend Development > Python Tutorial > Deploying a MongoDB Collection Generator on Kubernetes

Deploying a MongoDB Collection Generator on Kubernetes

Patricia Arquette
Release: 2024-11-03 03:54:02
Original
458 people have browsed it

Creating a utility to generate 100 MongoDB collections, each populated with 1 million random documents, and deploying it on Kubernetes involves several steps. This guide walks through the process, from setting up a Kubernetes environment to generating the collections and deploying the job in a dedicated namespace.

Deploying a MongoDB Collection Generator on Kubernetes

1. Setting Up Your Kubernetes Environment

Ensure you have a Kubernetes cluster (such as GKE, EKS, AKS, or Minikube) and configure kubectl to connect to it.

2. Create a Dedicated Namespace

To keep this deployment isolated, create a namespace called my-lab:

kubectl create namespace my-lab
kubectl get ns my-lab
Copy after login

3. Deploy MongoDB on Kubernetes

Create a Persistent Volume (PV)

Create a mongo-pv.yaml file to define a persistent volume for MongoDB data:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: mongo-pv
  namespace: my-lab
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: /data/mongo
Copy after login

Apply the PV:

kubectl apply -f mongo-pv.yaml
Copy after login

Create a Persistent Volume Claim (PVC)

Define a persistent volume claim in mongo-pvc.yaml:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mongo-pvc
  namespace: my-lab
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
Copy after login

Apply the PVC:

kubectl apply -f mongo-pvc.yaml
Copy after login

Create a MongoDB Deployment

Define the MongoDB deployment and service in mongo-deployment.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mongo
  namespace: my-lab
spec:
  replicas: 1
  selector:
    matchLabels:
      app: mongo
  template:
    metadata:
      labels:
        app: mongo
    spec:
      containers:
        - name: mongo
          image: mongo:latest
          ports:
            - containerPort: 27017
          env:
            - name: MONGO_INITDB_ROOT_USERNAME
              value: "root"
            - name: MONGO_INITDB_ROOT_PASSWORD
              value: "password"
          volumeMounts:
            - name: mongo-storage
              mountPath: /data/db
      volumes:
        - name: mongo-storage
          persistentVolumeClaim:
            claimName: mongo-pvc
---
apiVersion: v1
kind: Service
metadata:
  name: mongo
  namespace: my-lab
spec:
  type: ClusterIP
  ports:
    - port: 27017
      targetPort: 27017
  selector:
    app: mongo
Copy after login

Apply the deployment:

kubectl apply -f mongo-deployment.yaml
Copy after login

4. Connect to MongoDB

Verify the MongoDB deployment by connecting to it:

kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
Copy after login
Copy after login

5. Verify Persistence

Scale down and then back up the MongoDB deployment to ensure data persists:

kubectl scale deployment mongo --replicas=0 -n my-lab
kubectl scale deployment mongo --replicas=1 -n my-lab
Copy after login

6. Create a Python Utility for Collection Generation

Using Python, define a script to create collections and populate them with random documents:

import random
import string
import pymongo
from pymongo import MongoClient

def random_string(length=10):
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))

def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000):
    client = MongoClient('mongodb://root:password@mongo:27017/')
    db = client[db_name]

    for i in range(collections_count):
        collection_name = f'collection_{i+1}'
        collection = db[collection_name]
        print(f'Creating collection: {collection_name}')

        bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)]
        collection.insert_many(bulk_data)
        print(f'Inserted {documents_per_collection} documents into {collection_name}')

if __name__ == "__main__":
    create_collections_and_populate()
Copy after login

7. Dockerize the Python Utility

Create a Dockerfile to containerize the Python script:

FROM python:3.9-slim

WORKDIR /app
COPY mongo_populator.py .
RUN pip install pymongo

CMD ["python", "mongo_populator.py"]
Copy after login

Build and push the image to a container registry:

docker build -t <your-docker-repo>/mongo-populator:latest .
docker push <your-docker-repo>/mongo-populator:latest
Copy after login

8. Create a Kubernetes Job

Define a job in mongo-populator-job.yaml to run the collection generation script:

apiVersion: batch/v1
kind: Job
metadata:
  name: mongo-populator
  namespace: my-lab
spec:
  template:
    spec:
      containers:
        - name: mongo-populator
          image: <your-docker-repo>/mongo-populator:latest
          env:
            - name: MONGO_URI
              value: "mongodb://root:password@mongo:27017/"
      restartPolicy: Never
  backoffLimit: 4
Copy after login

Apply the job:

kubectl apply -f mongo-populator-job.yaml
Copy after login

9. Verify Collection Generation

After the job completes, connect to MongoDB to examine the data:

kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
Copy after login
Copy after login

In MongoDB:

use mydatabase
show collections
db.collection_9.find().limit(5).pretty()

db.getCollectionNames().forEach(function(collection) {
     var count = db[collection].countDocuments();
     print(collection + ": " + count + " documents");
 });

Copy after login

Each collection should contain 1 million documents, confirming that the data generation job was successful.

The above is the detailed content of Deploying a MongoDB Collection Generator on Kubernetes. For more information, please follow other related articles on the PHP Chinese website!

source:dev.to
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template