Algorithms Behind JavaScript Array Methods
Algorithms Behind JavaScript Array Methods.
JavaScript arrays come with various built-in methods that allow manipulation and retrieval of data in an array. Here’s a list of array methods extracted from your outline:
- concat()
- join()
- fill()
- includes()
- indexOf()
- reverse()
- sort()
- splice()
- at()
- copyWithin()
- flat()
- Array.from()
- findLastIndex()
- forEach()
- every()
- entries()
- values()
- toReversed() (creates a reversed copy of the array without modifying the original)
- toSorted() (creates a sorted copy of the array without modifying the original)
- toSpliced() (creates a new array with elements added or removed without modifying the original)
- with() (returns a copy of the array with a specific element replaced)
- Array.fromAsync()
- Array.of()
- map()
- flatMap()
- reduce()
- reduceRight()
- some()
- find()
- findIndex()
- findLast()
Let me break down the common algorithms used for each JavaScript array method:
1. concat()
- Algorithm: Linear append/merge
- Time Complexity: O(n) where n is total length of all arrays
- Internally uses iteration to create new array and copy elements
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
2. join()
- Algorithm: Linear traversal with string concatenation
- Time Complexity: O(n)
- Iterates through array elements and builds result string
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i < this.length; i++) { result += this[i]; if (i < this.length - 1) result += separator; } return result; };
3. fill()
- Algorithm: Linear traversal with assignment
- Time Complexity: O(n)
- Simple iteration with value assignment
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i < end; i++) { this[i] = value; } return this; };
4. includes()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan until element found or end reached
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) { return true; } } return false; };
5. indexOf()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan from start until match found
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement) return i; } return -1; };
6. reverse()
- Algorithm: Two-pointer swap
- Time Complexity: O(n/2)
- Swaps elements from start/end moving inward
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left < right) { // Swap elements const temp = this[left]; this[left] = this[right]; this[right] = temp; left++; right--; } return this; };
7. sort()
- Algorithm: Typically TimSort (hybrid of merge sort and insertion sort)
- Time Complexity: O(n log n)
- Modern browsers use adaptive sorting algorithms
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low < high) { const pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } }; const partition = (arr, low, high) => { const pivot = arr[high]; let i = low - 1; for (let j = low; j < high; j++) { const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot)); if (compareResult <= 0) { i++; [arr[i], arr[j]] = [arr[j], arr[i]]; } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; return i + 1; }; quickSort(this, 0, this.length - 1); return this; };
8. splice()
- Algorithm: Linear array modification
- Time Complexity: O(n)
- Shifts elements and modifies array in-place
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart); // Store deleted elements const deleted = []; for (let i = 0; i < actualDeleteCount; i++) { deleted[i] = this[actualStart + i]; } // Shift elements if necessary const itemCount = items.length; const shiftCount = itemCount - actualDeleteCount; if (shiftCount > 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount < 0) { // Moving elements left for (let i = actualStart + actualDeleteCount; i < len; i++) { this[i + shiftCount] = this[i]; } } // Insert new items for (let i = 0; i < itemCount; i++) { this[actualStart + i] = items[i]; } this.length = len + shiftCount; return deleted; };
9. at()
- Algorithm: Direct index access
- Time Complexity: O(1)
- Simple array indexing with boundary checking
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
10. copyWithin()
- Algorithm: Block memory copy
- Time Complexity: O(n)
- Internal memory copy and shift operations
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len); let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len); const count = Math.min(final - from, len - to); // Copy to temporary array to handle overlapping const temp = new Array(count); for (let i = 0; i < count; i++) { temp[i] = this[from + i]; } for (let i = 0; i < count; i++) { this[to + i] = temp[i]; } return this; };
11. flat()
- Algorithm: Recursive depth-first traversal
- Time Complexity: O(n) for single level, O(d*n) for depth d
- Recursively flattens nested arrays
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth < depth) { result.push(...flatten(item, currentDepth + 1)); } else { result.push(item); } } return result; }; return flatten(this, 0); };
12. Array.from()
- Algorithm: Iteration and copy
- Time Complexity: O(n)
- Creates new array from iterable
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i < arrayLike.length; i++) { result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i]; } return result; };
13. findLastIndex()
- Algorithm: Reverse linear search
- Time Complexity: O(n)
- Sequential scan from end until match found
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
14. forEach()
- Algorithm: Linear iteration
- Time Complexity: O(n)
- Simple iteration with callback execution
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i < this.length; i++) { if (i in this) { // Skip holes in sparse arrays callback(this[i], i, this); } } };
15. every()
Algorithm: Short-circuit linear scan
Time Complexity: O(n)
Stops on first false condition
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
16. entries()
- Algorithm: Iterator protocol implementation
- Time Complexity: O(1) for creation, O(n) for full iteration
- Creates iterator object
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i < this.length; i++) { result += this[i]; if (i < this.length - 1) result += separator; } return result; };
17. values()
- Algorithm: Iterator protocol implementation
- Time Complexity: O(1) for creation, O(n) for full iteration
- Creates iterator for values
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i < end; i++) { this[i] = value; } return this; };
18. toReversed()
- Algorithm: Copy with reverse iteration
- Time Complexity: O(n)
- Creates new reversed array
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) { return true; } } return false; };
19. toSorted()
- Algorithm: Copy then TimSort
- Time Complexity: O(n log n)
- Creates sorted copy using standard sort
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement) return i; } return -1; };
20. toSpliced()
- Algorithm: Copy with modification
- Time Complexity: O(n)
- Creates modified copy
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left < right) { // Swap elements const temp = this[left]; this[left] = this[right]; this[right] = temp; left++; right--; } return this; };
21. with()
- Algorithm: Shallow copy with single modification
- Time Complexity: O(n)
- Creates copy with one element changed
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low < high) { const pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } }; const partition = (arr, low, high) => { const pivot = arr[high]; let i = low - 1; for (let j = low; j < high; j++) { const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot)); if (compareResult <= 0) { i++; [arr[i], arr[j]] = [arr[j], arr[i]]; } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; return i + 1; }; quickSort(this, 0, this.length - 1); return this; };
22. Array.fromAsync()
- Algorithm: Asynchronous iteration and collection
- Time Complexity: O(n) async operations
- Handles promises and async iterables
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart); // Store deleted elements const deleted = []; for (let i = 0; i < actualDeleteCount; i++) { deleted[i] = this[actualStart + i]; } // Shift elements if necessary const itemCount = items.length; const shiftCount = itemCount - actualDeleteCount; if (shiftCount > 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount < 0) { // Moving elements left for (let i = actualStart + actualDeleteCount; i < len; i++) { this[i + shiftCount] = this[i]; } } // Insert new items for (let i = 0; i < itemCount; i++) { this[actualStart + i] = items[i]; } this.length = len + shiftCount; return deleted; };
23. Array.of()
- Algorithm: Direct array creation
- Time Complexity: O(n)
- Creates array from arguments
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
24. map()
- Algorithm: Transform iteration
- Time Complexity: O(n)
- Creates new array with transformed elements
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len); let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len); const count = Math.min(final - from, len - to); // Copy to temporary array to handle overlapping const temp = new Array(count); for (let i = 0; i < count; i++) { temp[i] = this[from + i]; } for (let i = 0; i < count; i++) { this[to + i] = temp[i]; } return this; };
25. flatMap()
- Algorithm: Map flatten
- Time Complexity: O(n*m) where m is average mapped array size
- Combines mapping and flattening
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth < depth) { result.push(...flatten(item, currentDepth + 1)); } else { result.push(item); } } return result; }; return flatten(this, 0); };
26. reduce()
- Algorithm: Linear accumulation
- Time Complexity: O(n)
- Sequential accumulation with callback
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i < arrayLike.length; i++) { result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i]; } return result; };
27. reduceRight()
- Algorithm: Reverse linear accumulation
- Time Complexity: O(n)
- Right-to-left accumulation
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
28. some()
- Algorithm: Short-circuit linear scan
- Time Complexity: O(n)
- Stops on first true condition
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i < this.length; i++) { if (i in this) { // Skip holes in sparse arrays callback(this[i], i, this); } } };
29. find()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan until condition met
// every() Array.prototype.myEvery = function(predicate) { for (let i = 0; i < this.length; i++) { if (i in this && !predicate(this[i], i, this)) { return false; } } return true; };
30. findIndex()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan for matching condition
// entries() Array.prototype.myEntries = function() { let index = 0; const array = this; return { [Symbol.iterator]() { return this; }, next() { if (index < array.length) { return { value: [index, array[index++]], done: false }; } return { done: true }; } }; };
31. findLast()
- Algorithm: Reverse linear search
- Time Complexity: O(n)
- Sequential scan from end
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
I've provided complete implementations of all 31 array methods you requested.
? Connect with me on LinkedIn:
Let’s dive deeper into the world of software engineering together! I regularly share insights on JavaScript, TypeScript, Node.js, React, Next.js, data structures, algorithms, web development, and much more. Whether you're looking to enhance your skills or collaborate on exciting topics, I’d love to connect and grow with you.
Follow me: Nozibul Islam
The above is the detailed content of Algorithms Behind JavaScript Array Methods. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.
