Why Doesn't My C 11 Move Constructor Get Called in This Case?
C 11 Move Constructor Not Called, Default Constructor Preferred
Problem
Consider the following class:
<code class="cpp">class X { public: explicit X(char* c) { cout << "ctor" << endl; init(c); }; X(X& lv) { cout << "copy" << endl; init(lv.c_); }; X(X&& rv) { cout << "move" << endl; c_ = rv.c_; rv.c_ = nullptr; }; const char* c() { return c_; }; private: void init(char *c) { c_ = new char[strlen(c)+1]; strcpy(c_, c); }; char* c_; };</code>
And its usage:
<code class="cpp">X x("test"); cout << x.c() << endl; X y(x); cout << y.c() << endl; X z( X("test") ); cout << z.c() << endl;</code>
The output is:
ctor test copy test ctor <-- why not move? test
In VS2010, using default settings, one would expect the last object (z) to be move-constructed instead of default-constructed. Using X z( move(X("test")) ) results in the expected output: ctor move test. Could this be a case of NRVO?
Question
Should the move constructor be called according to the C 11 standard? If so, why isn't it called?
Answer
The observed behavior is due to copy elision. The compiler can directly construct a temporary into a target it is to be copied/moved into, thus omitting the copy/move constructor and destructor calls.
The situations where copy elision can be applied are outlined in §12.8.32 of the C 11 standard:
- In a function with a class return type, if the return expression is a non-volatile automatic object with the same type as the return type.
- In a throw-expression, if the operand is a non-volatile automatic object with a scope not extending beyond the enclosing try-block.
- When a class object that has not been bound to a reference would be copied/moved to a class object with the same type.
- When the exception handler declares an object of the same type as the exception object by treating the exception-declaration as an alias.
In this case, the compiler is able to elide the copy or move operation between the temporary X("test") and the target z, resulting in the observed behavior.
The above is the detailed content of Why Doesn't My C 11 Move Constructor Get Called in This Case?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.
