How can I convert a Pandas DataFrame with missing values into a NumPy array using `df.to_numpy()` and preserve data types?

Linda Hamilton
Release: 2024-11-06 03:57:02
Original
728 people have browsed it

How can I convert a Pandas DataFrame with missing values into a NumPy array using `df.to_numpy()` and preserve data types?

Convert Pandas Dataframe with Missing Values to NumPy Array

Using df.to_numpy()

To convert a Pandas dataframe with missing values into a NumPy array with np.nan representing missing values, use the df.to_numpy() method. It provides a consistent and reliable way to obtain NumPy arrays from both dataframes and index/series objects.

<code class="python">import numpy as np
import pandas as pd

df = pd.DataFrame({
    "A": [np.nan, np.nan, np.nan, 0.1, 0.1, 0.1, 0.1],
    "B": [0.2, np.nan, 0.2, 0.2, 0.2, np.nan, np.nan],
    "C": [np.nan, 0.5, 0.5, np.nan, 0.5, 0.5, np.nan],
}, index=[1, 2, 3, 4, 5, 6, 7])

np_array = df.to_numpy()
print(np_array)</code>
Copy after login

This will output a NumPy array with missing values represented as np.nan:

[[ nan  0.2  nan]
 [ nan  nan  0.5]
 [ nan  0.2  0.5]
 [ 0.1  0.2  nan]
 [ 0.1  0.2  0.5]
 [ 0.1  nan  0.5]
 [ 0.1  nan  nan]]
Copy after login

Preserving Data Types

To preserve data types in the NumPy array, use the np.rec.fromrecords() function:

<code class="python">v = df.reset_index()
np_array_dtypes = np.rec.fromrecords(v, names=v.columns.tolist())
print(np_array_dtypes)</code>
Copy after login

This will output a NumPy array with the original data types preserved as follows:

rec.array([('1', 1, 0.2, 0.5), ('2', 2, np.nan, 0.5), ('3', 3, 0.2, 0.5),
           ('4', 4, 0.2, np.nan), ('5', 5, 0.2, 0.5), ('6', 6, np.nan, 0.5),
           ('7', 7, np.nan, np.nan)],
          dtype=[('index', '<U1'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
Copy after login

The above is the detailed content of How can I convert a Pandas DataFrame with missing values into a NumPy array using `df.to_numpy()` and preserve data types?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!