


Building a TypeScript Helper for Mock Data Generation with Zod and Faker
When building applications, mock data can be invaluable for testing, development, and prototyping. With Zod’s robust schema validation and Faker’s data generation capabilities, we can create a powerful helper to generate realistic, schema-compliant mock data for any Zod schema.
Introduction
In this guide, we’ll create a helper function generateMockDataFromSchema that accepts a Zod schema and returns mock data that matches the schema’s structure and validation rules. Let’s dive in step-by-step!
Article Walkthrough
- Introduction
- Article Walkthrough
- Code Snippets
- Why Use Zod and Faker for Mock Data?
-
Creating the Mock Data Generator
- The generateMockDataFromSchema Helper Function
-
Handling Each Schema Type
- Strings with Specific Requirements
- Numeric Values
- Booleans
- Arrays
- Optional and Nullable Fields
- Objects with Nested Fields
- Example Usage
- Adding Customization Options
- Testing the Helper Function
- Conclusion
Code Snippets
- Mock Data Generator Helper Function
- React Example Stackblitz
Why Use Zod and Faker for Mock Data?
Before we start coding, let’s discuss why Zod and Faker are perfect for this task:
Zod: Provides a robust, type-safe way to define data schemas in TypeScript. Its schema validation capabilities ensure our mock data complies with specific rules like email formats, UUIDs, or minimum/maximum values.
Faker: Generates realistic random data such as names, dates, emails, and URLs. This is especially useful when we need mock data that resembles real-world scenarios, making it perfect for testing and demo purposes.
Combining Zod and Faker gives us the ability to create mock data that’s both realistic and schema-compliant.
Creating the Mock Data Generator
The heart of our solution is the generateMockDataFromSchema helper function, which can interpret a Zod schema and generate matching mock data. This function handles various data types (string, number, array, object) and respects validation constraints within each schema type. Let’s explore how it’s built.
The generateMockDataFromSchema Helper Function
The generateMockDataFromSchema function accepts two parameters:
- schema: A Zod schema that defines the shape and rules for the data.
- options (optional): An object to customize array lengths and optional field behavior.
Here’s the function, broken down into each section to explain the handling of different schema types.
import { ZodSchema, ZodObject, ZodString, ZodNumber, ZodBoolean, ZodArray, ZodOptional, ZodNullable, ZodTypeAny, ZodStringCheck, } from "zod"; import { faker } from "@faker-js/faker"; import { z } from "zod"; const handleStringCheck = (check: ZodStringCheck) => { switch (check.kind) { case "date": return faker.date.recent().toISOString(); case "url": return faker.internet.url(); case "email": return faker.internet.email(); case "uuid": case "cuid": case "nanoid": case "cuid2": case "ulid": return crypto.randomUUID(); case "emoji": return faker.internet.emoji(); default: return faker.lorem.word(); } }; type GeneratorPrimitiveOptions = { array?: { min?: number; max?: number; }; optional?: { probability?: number; }; }; const getArrayLength = (options?: GeneratorPrimitiveOptions) => { return faker.number.int({ min: options?.array?.min || 1, max: options?.array?.max || 10, }); }; export function generateTestDataFromSchema<T>( schema: ZodSchema<T>, options?: GeneratorPrimitiveOptions ): T { if (schema instanceof ZodString) { const check = schema._def.checks.find((check) => handleStringCheck(check)); if (check) { return handleStringCheck(check) as T; } return faker.lorem.word() as T; } if (schema instanceof ZodNumber) { return faker.number.int() as T; } if (schema instanceof ZodBoolean) { return faker.datatype.boolean() as T; } if (schema instanceof ZodArray) { const arraySchema = schema.element; const length = getArrayLength(options); return Array.from({ length }).map(() => generateTestDataFromSchema(arraySchema) ) as T; } if (schema instanceof ZodOptional || schema instanceof ZodNullable) { const probability = options?.optional?.probability || 0.5; return ( Math.random() > probability ? generateTestDataFromSchema(schema.unwrap()) : null ) as T; } if (schema instanceof ZodObject) { const shape = schema.shape; const result: any = {}; for (const key in shape) { result[key] = generateTestDataFromSchema(shape[key] as ZodTypeAny); } return result as T; } throw new Error("Unsupported schema type", { cause: schema, }); }
Handling Each Schema Type
In generateMockDataFromSchema, each Zod schema type (like ZodString, ZodNumber, etc.) is handled differently to account for its unique requirements. Let’s go through each type.
Strings with Specific Requirements
For ZodString, we need to consider any specific checks like email, url, or uuid. This is where our helper function handleStringCheck comes in. It inspects the string schema and, if any checks are present, returns a relevant mock value (e.g., an email for email, a URL for url). If no specific checks are found, it defaults to generating a random word.
const handleStringCheck = (check: ZodStringCheck) => { switch (check.kind) { case "date": return faker.date.recent().toISOString(); case "url": return faker.internet.url(); case "email": return faker.internet.email(); case "uuid": case "cuid": case "nanoid": case "cuid2": case "ulid": return crypto.randomUUID(); case "emoji": return faker.internet.emoji(); default: return faker.lorem.word(); } };
In generateMockDataFromSchema, we use this helper to generate data for string fields with checks.
Numeric Values
For ZodNumber, we generate integers with Faker’s faker.number.int() method. This part can be further customized to handle minimum and maximum values if they’re defined in the schema.
if (schema instanceof ZodNumber) { return faker.number.int() as T; }
Booleans
For booleans, Faker offers a simple faker.datatype.boolean() function to randomly generate true or false values.
if (schema instanceof ZodBoolean) { return faker.datatype.boolean() as T; }
Arrays
When dealing with ZodArray, we recursively generate mock data for each element in the array. We also allow customizing the array length using the options parameter.
To generate arrays, we first decide the length using getArrayLength, a helper function that checks for minimum and maximum lengths in the options. For each array element, generateMockDataFromSchema is called recursively, ensuring that nested schemas within arrays are also handled.
type GeneratorPrimitiveOptions = { array?: { min?: number; max?: number; }; optional?: { probability?: number; }; }; if (schema instanceof ZodOptional || schema instanceof ZodNullable) { const probability = options?.optional?.probability || 0.5; return ( Math.random() > probability ? generateTestDataFromSchema(schema.unwrap()) : null ) as T; } const getArrayLength = (options?: GeneratorPrimitiveOptions) => { return faker.number.int({ min: options?.array?.min || 1, max: options?.array?.max || 10, }); };
Optional and Nullable Fields
Optional and nullable fields are handled by randomly deciding whether to include them in the output. The options.optional.probability setting allows us to control this probability. If a field is generated, it calls generateMockDataFromSchema recursively for the inner schema.
if (schema instanceof ZodOptional || schema instanceof ZodNullable) { const shouldGenerate = Math.random() > (options?.optional?.probability || 0.5); return shouldGenerate ? generateMockDataFromSchema(schema.unwrap(), options) : null; }
Objects with Nested Fields
For ZodObject, we iterate over each key-value pair and recursively generate data for each field. This approach supports deeply nested objects, making it highly flexible.
if (schema instanceof ZodObject) { const shape = schema.shape; const result: any = {}; for (const key in shape) { result[key] = generateMockDataFromSchema(shape[key] as ZodTypeAny, options); } return result as T; }
Example Usage
With generateMockDataFromSchema in place, let’s see it in action. Here’s an example schema, UserSchema, with different types, optional fields, and nested arrays.
import { ZodSchema, ZodObject, ZodString, ZodNumber, ZodBoolean, ZodArray, ZodOptional, ZodNullable, ZodTypeAny, ZodStringCheck, } from "zod"; import { faker } from "@faker-js/faker"; import { z } from "zod"; const handleStringCheck = (check: ZodStringCheck) => { switch (check.kind) { case "date": return faker.date.recent().toISOString(); case "url": return faker.internet.url(); case "email": return faker.internet.email(); case "uuid": case "cuid": case "nanoid": case "cuid2": case "ulid": return crypto.randomUUID(); case "emoji": return faker.internet.emoji(); default: return faker.lorem.word(); } }; type GeneratorPrimitiveOptions = { array?: { min?: number; max?: number; }; optional?: { probability?: number; }; }; const getArrayLength = (options?: GeneratorPrimitiveOptions) => { return faker.number.int({ min: options?.array?.min || 1, max: options?.array?.max || 10, }); }; export function generateTestDataFromSchema<T>( schema: ZodSchema<T>, options?: GeneratorPrimitiveOptions ): T { if (schema instanceof ZodString) { const check = schema._def.checks.find((check) => handleStringCheck(check)); if (check) { return handleStringCheck(check) as T; } return faker.lorem.word() as T; } if (schema instanceof ZodNumber) { return faker.number.int() as T; } if (schema instanceof ZodBoolean) { return faker.datatype.boolean() as T; } if (schema instanceof ZodArray) { const arraySchema = schema.element; const length = getArrayLength(options); return Array.from({ length }).map(() => generateTestDataFromSchema(arraySchema) ) as T; } if (schema instanceof ZodOptional || schema instanceof ZodNullable) { const probability = options?.optional?.probability || 0.5; return ( Math.random() > probability ? generateTestDataFromSchema(schema.unwrap()) : null ) as T; } if (schema instanceof ZodObject) { const shape = schema.shape; const result: any = {}; for (const key in shape) { result[key] = generateTestDataFromSchema(shape[key] as ZodTypeAny); } return result as T; } throw new Error("Unsupported schema type", { cause: schema, }); }
Adding Customization Options
The generateMockDataFromSchema function also accepts an optional options parameter to customize array lengths and optional field behavior. Here’s an example of how you can use these options:
const handleStringCheck = (check: ZodStringCheck) => { switch (check.kind) { case "date": return faker.date.recent().toISOString(); case "url": return faker.internet.url(); case "email": return faker.internet.email(); case "uuid": case "cuid": case "nanoid": case "cuid2": case "ulid": return crypto.randomUUID(); case "emoji": return faker.internet.emoji(); default: return faker.lorem.word(); } };
This will ensure array fields have a length between 2 and 5, and optional fields are generated with a 70% probability.
Testing the Helper Function
To confirm that generateMockDataFromSchema works as expected, create unit tests for different schema configurations. Here’s an example of a test for an array schema:
if (schema instanceof ZodNumber) { return faker.number.int() as T; }
By writing tests for various schema types and configurations, you can ensure that the helper function behaves correctly in different scenarios.
Conclusion
By combining Zod and Faker, we’ve created a powerful, reusable mock data generator tailored to TypeScript projects. The ability to test different scenarios and see realistic data in action makes it invaluable for rapid development and quality testing.
The above is the detailed content of Building a TypeScript Helper for Mock Data Generation with Zod and Faker. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Frequently Asked Questions and Solutions for Front-end Thermal Paper Ticket Printing In Front-end Development, Ticket Printing is a common requirement. However, many developers are implementing...

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

How to merge array elements with the same ID into one object in JavaScript? When processing data, we often encounter the need to have the same ID...

Learning JavaScript is not difficult, but it is challenging. 1) Understand basic concepts such as variables, data types, functions, etc. 2) Master asynchronous programming and implement it through event loops. 3) Use DOM operations and Promise to handle asynchronous requests. 4) Avoid common mistakes and use debugging techniques. 5) Optimize performance and follow best practices.

Discussion on the realization of parallax scrolling and element animation effects in this article will explore how to achieve similar to Shiseido official website (https://www.shiseido.co.jp/sb/wonderland/)...

In-depth discussion of the root causes of the difference in console.log output. This article will analyze the differences in the output results of console.log function in a piece of code and explain the reasons behind it. �...

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.
