How to Store ECDSA Private Keys Securely in Go?
Storing ECDSA Private Keys in Go
When working with ECDSA key pairs in Go, the need often arises to store the private key securely. This guide will delve into techniques for effectively storing private keys in files on the user's computer.
Encoding and Decoding Private Keys
Go does not provide a direct mechanism for marshaling private keys using the elliptic.Marshal method. Instead, a multi-step encoding process is required:
- Cryptographic Algorithm: Use the ECDSA algorithm to generate a key, such as ecdsa.GenerateKey(elliptic.P384(), rand.Reader).
- Standard Encoding: Convert the private key to x509 format using x509.MarshalECPrivateKey(privateKey).
- File Format: Encode the x509 structure to PEM format using pem.EncodeToMemory(block), where block represents the x509 structure.
Sample Code
The following Go code demonstrates the above process:
package main import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/x509" "encoding/pem" "fmt" "reflect" ) func encode(privateKey *ecdsa.PrivateKey, publicKey *ecdsa.PublicKey) (string, string) { x509Encoded, _ := x509.MarshalECPrivateKey(privateKey) pemEncoded := pem.EncodeToMemory(&pem.Block{Type: "PRIVATE KEY", Bytes: x509Encoded}) x509EncodedPub, _ := x509.MarshalPKIXPublicKey(publicKey) pemEncodedPub := pem.EncodeToMemory(&pem.Block{Type: "PUBLIC KEY", Bytes: x509EncodedPub}) return string(pemEncoded), string(pemEncodedPub) } func decode(pemEncoded string, pemEncodedPub string) (*ecdsa.PrivateKey, *ecdsa.PublicKey) { block, _ := pem.Decode([]byte(pemEncoded)) x509Encoded := block.Bytes privateKey, _ := x509.ParseECPrivateKey(x509Encoded) blockPub, _ := pem.Decode([]byte(pemEncodedPub)) x509EncodedPub := blockPub.Bytes genericPublicKey, _ := x509.ParsePKIXPublicKey(x509EncodedPub) publicKey := genericPublicKey.(*ecdsa.PublicKey) return privateKey, publicKey } func main() { privateKey, _ := ecdsa.GenerateKey(elliptic.P384(), rand.Reader) publicKey := &privateKey.PublicKey encPriv, encPub := encode(privateKey, publicKey) fmt.Println(encPriv) fmt.Println(encPub) priv2, pub2 := decode(encPriv, encPub) if !reflect.DeepEqual(privateKey, priv2) { fmt.Println("Private keys do not match.") } if !reflect.DeepEqual(publicKey, pub2) { fmt.Println("Public keys do not match.") } }
By storing the PEM-encoded private key as a file, it can be retrieved and decoded later as needed. Remember to employ appropriate security measures to protect the file from unauthorized access or exposure.
The above is the detailed content of How to Store ECDSA Private Keys Securely in Go?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The article discusses the go fmt command in Go programming, which formats code to adhere to official style guidelines. It highlights the importance of go fmt for maintaining code consistency, readability, and reducing style debates. Best practices fo
