Home Backend Development Python Tutorial How do I efficiently merge multiple dataframes based on a common date column?

How do I efficiently merge multiple dataframes based on a common date column?

Nov 12, 2024 pm 12:36 PM

How do I efficiently merge multiple dataframes based on a common date column?

Merging Multiple Dataframes Based on Date

You have multiple dataframes with a common date column but varying numbers of rows and columns. The goal is to merge these dataframes to obtain rows where each date is common to all dataframes.

Inefficient Recursion Approach

Your attempt to use a recursion function to merge dataframes is flawed. The function enters an infinite loop because it continuously calls itself with the same inputs. This approach is inefficient and prone to errors.

Optimized Solution Using reduce

A more efficient method for merging multiple dataframes is to use the reduce function from the functools module. This function reduces a list of dataframes into a single dataframe by repeatedly applying a specified merge operation to adjacent pairs of dataframes.

The following code snippet demonstrates this approach:

1

2

3

4

5

6

import pandas as pd

from functools import reduce

 

dfs = [df1, df2, df3]  # list of dataframes

 

df_merged = reduce(lambda left, right: pd.merge(left, right, on='date', how='outer'), dfs)

Copy after login

In this code, the reduce function reduces the dfs list into a single dataframe by iteratively merging adjacent pairs of dataframes. The on='date' parameter specifies that the merge should be performed based on the date column. The how='outer' parameter ensures that all rows from both dataframes are included in the merged result, even if they do not share the same date.

Advantages of reduce Function

Using the reduce function offers several advantages:

  • Simplicity: The code is concise and easy to understand.
  • No Nesting: Unlike your recursion approach, there is no nesting of merge operations, eliminating the risk of infinite loops.
  • Extensibility: You can add or remove dataframes from the dfs list to change the merge operation dynamically.

Example

Using the provided dataframes df1, df2, and df3, you would obtain the following merged dataframe:

1

2

       DATE  VALUE1  VALUE2  VALUE3

0  May 15, 2017  1901.00  2902.00  3903.00

Copy after login

This dataframe contains only rows with a date that is common to all three input dataframes.

The above is the detailed content of How do I efficiently merge multiple dataframes based on a common date column?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1262
29
C# Tutorial
1234
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles