Home > Backend Development > Python Tutorial > How Can I Dynamically Evaluate Expressions in Pandas?

How Can I Dynamically Evaluate Expressions in Pandas?

Patricia Arquette
Release: 2024-11-15 10:07:02
Original
460 people have browsed it

How Can I Dynamically Evaluate Expressions in Pandas?

Evaluating Expressions Dynamically with Pandas

Problem Statement

You want to perform dynamic operations on DataFrames using pd.eval, including variable substitution and complex arithmetic.

Solution

1. Using pd.eval()

# Import necessary libraries
import pandas as pd
import numpy as np

# Create sample DataFrames
np.random.seed(0)
df1 = pd.DataFrame(np.random.choice(10, (5, 4)), columns=list('ABCD'))
df2 = pd.DataFrame(np.random.choice(10, (5, 4)), columns=list('ABCD'))

# Evaluate expression using a variable
x = 5
result = pd.eval("df1.A + (df1.B * x)")

# Alternatively, assign the result to a new column
pd.eval("df2['D'] = df1.A + (df1.B * x)")
Copy after login

Arguments for Performance

The following arguments can be used to optimize pd.eval performance:

  • engine='numexpr': Use the highly optimized numexpr engine.
  • parser='pandas': Use the default pandas parser, which aligns with Pandas' operator precedence.
  • global_dict and local_dict: Supply dictionaries of global and local variables for substitution. This avoids the need to define variables in the global namespace.

Assignment and in-place Modification

You can assign the result of pd.eval directly to a DataFrame using the target argument.

df3 = pd.DataFrame(columns=list('FBGH'), index=df1.index)
pd.eval("df3['B'] = df1.A + df2.A", target=df3)

# In-place modification
pd.eval("df2.B = df1.A + df2.A", target=df2, inplace=True)
Copy after login

2. Using df.eval()

# Evaluate expression in df1
result = df1.eval("A + B")

# Perform variable substitution
df1.eval("A > @x", local_dict={'x': 5})
Copy after login

Comparison with df.query()

While pd.eval is suitable for evaluating expressions, df.query() is more concise and efficient for conditional queries, as it filters the DataFrame based on a Boolean expression.

# Query df1
df1.query("A > B")
Copy after login

The above is the detailed content of How Can I Dynamically Evaluate Expressions in Pandas?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template