


How to Access a FastAPI Backend from a Different Machine on the Same Local Network?
Accessing FastAPI Backend from a Different Machine on the Same Local Network
Solution:
To access a FastAPI backend from a different machine or IP address on the same local network, it's essential to ensure the following:
1. Set the Host Flag to 0.0.0.0
By setting the host of the FastAPI application to 0.0.0.0, the server will listen on all IPv4 addresses on the local machine. This allows it to be reachable from any machine on the network.
2. Adjust Firewall Settings
Depending on your operating system, you may need to adjust firewall settings to allow external access to the specified port for the FastAPI server.
3. Configure CORS
If the frontend is listening on a different IP address or port than the backend, proper CORS configuration is crucial. Ensure that the frontend's origin is included in the CORS settings of the backend to allow cross-origin requests.
4. JavaScript Fetch Requests
When making fetch requests from the frontend, use the same origin (e.g., IP address and port) that you type in the browser's address bar. For example:
1 |
|
Additional Considerations:
- If both frontend and backend are running on the same machine on the same port, you can use relative paths for convenience.
- If you're accessing the frontend or backend using localhost or 127.0.0.1 on the same machine, they are considered different origins and require CORS configuration.
- Include the frontend origin in the CORS settings of the backend whenever the frontend origin differs from the backend origin.
The above is the detailed content of How to Access a FastAPI Backend from a Different Machine on the Same Local Network?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
