Pandas Melt Function: Reshaping Dataframes for Analysis
Question:
Consider a dataframe with multiple columns and a dictionary:
df = pd.DataFrame([[2, 4, 7, 8, 1, 3, 2013], [9, 2, 4, 5, 5, 6, 2014]], columns=['Amy', 'Bob', 'Carl', 'Chris', 'Ben', 'Other', 'Year'])<br>
d = {'A': ['Amy'], 'B': ['Bob', 'Ben'], 'C': ['Carl', 'Chris']}<br>
How do we reshape the dataframe to resemble the following structure, where columns are melted and grouped?
Group Name Year Value<br> 0 A Amy 2013 2<br> 1 A Amy 2014 9<br> 2 B Bob 2013 4<br> 3 B Bob 2014 2<br> 4 B Ben 2013 1<br> 5 B Ben 2014 5<br> 6 C Carl 2013 7<br> 7 C Carl 2014 4<br> 8 C Chris 2013 8<br> 9 C Chris 2014 5<br>10 Other 2013 3<br>11 Other 2014 6<br>
Answer:
To reshape the dataframe using the melt function, follow these steps:
Melt the dataframe: Melt the dataframe into a wide format using the melt function. This will convert the columns into rows, with the id_vars parameter used to specify the columns that should remain intact.
m = pd.melt(df, id_vars=['Year'], var_name='Name')
Create a mapping dictionary: Reshape the dictionary d to create a mapping between column names and group names.
d2 = {} for k, v in d.items(): for item in v: d2[item] = k
Add 'Group': Map the newly created dictionary d2 to the 'Name' column to add the 'Group' column.
m['Group'] = m['Name'].map(d2)
Move 'Other': Move 'Other' values from the 'Name' column to the 'Group' column.
mask = m['Name'] == 'Other' m.loc[mask, 'Name'] = '' m.loc[mask, 'Group'] = 'Other'
The resulting dataframe will contain the desired flattened structure:
print(m) Year Name value Group 0 2013 Amy 2 A 1 2014 Amy 9 A 2 2013 Bob 4 B 3 2014 Bob 2 B 4 2013 Carl 7 C ... ... ... ... ... 7 2014 Chris 5 C 8 2013 Ben 1 B 9 2014 Ben 5 B 10 2013 3 Other 11 2014 6 Other
The above is the detailed content of How to Reshape a Pandas DataFrame Using the Melt Function and a Dictionary?. For more information, please follow other related articles on the PHP Chinese website!