Home > Backend Development > Python Tutorial > Where's Charlie - AI

Where's Charlie - AI

Barbara Streisand
Release: 2024-11-22 08:12:10
Original
838 people have browsed it

Hello, in this article we're going to find a technique to solve Où est Charlie with AI.


I - Dataset

I found a dataset on the following github:
https://github.com/kiim29/Ou_est_charlie

The first step is to convert this data to Yolo v5 format.
To do this, I create the following directories:

yolov5/
├── train
│   ├── images
│   └── labels
└── val
    ├── images
    └── labels
Copy after login

And put all images in the good folder.

For the annotation, I create a script to read the csv in the github and create the various label files with the position type transformation.
Beacause the format of yolov5 labels file is :
index_item (xmin xmax) / 2 / width (ymin ymax) / 2 / height (xmax - xmin) / width (ymax - ymin) / height

import pandas as pd

class Main:


    def __init__(self):
        csv = pd.read_csv("../annotations/annotations.csv")
        for i in range(len(csv)):
            filename = csv["filename"][i].split(".")[0]
            width = csv["width"][i]
            height = csv["height"][i]
            xmin = csv["xmin"][i]
            ymin = csv["ymin"][i]
            xmax = csv["xmax"][i]
            ymax = csv["ymax"][i]

            x_center = (xmin + xmax) / 2 / width
            y_center = (ymin + ymax) / 2 / height
            bbox_width = (xmax - xmin) / width
            bbox_height = (ymax - ymin) / height


            with open(f"../dataset/train/labels/{filename}.txt", "a") as f:
                f.write(f"0 {x_center} {y_center} {bbox_width} {bbox_height}\n")






if __name__ == "__main__":
    Main()
Copy after login

II - Train

For training I use ultralytics

pip install ultralytics
Copy after login

And I launch the training with the following arguments.

from ultralytics import YOLO

model = YOLO('yolov8n.pt')

model.train(data='dataset.yaml', epochs=50, patience=10000)

model.export()
Copy after login

III - Test

For testing purposes, we can run a random image with ultralytics and the new model :)

import sys

from ultralytics import YOLO


model = YOLO('../last.pt')

image_path = f'../dataset/train/images/{sys.argv[1]}.jpg'

results = model(image_path,conf=0.2)
Copy after login

Où est Charlie - AI

The above is the detailed content of Where's Charlie - AI. For more information, please follow other related articles on the PHP Chinese website!

source:dev.to
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template