Table of Contents
Understanding std::hardware_destructive_interference_size and std::hardware_constructive_interference_size
Introduction
Relationship to L1 Cache Line Size
Use Cases
Limitations and Precautions
Example Program:
Home Backend Development C++ How Do std::hardware_destructive_interference_size and std::hardware_constructive_interference_size Help Optimize Memory Access?

How Do std::hardware_destructive_interference_size and std::hardware_constructive_interference_size Help Optimize Memory Access?

Nov 24, 2024 pm 03:35 PM

How Do std::hardware_destructive_interference_size and std::hardware_constructive_interference_size Help Optimize Memory Access?

Understanding std::hardware_destructive_interference_size and std::hardware_constructive_interference_size

Introduction

C 17 introduced two static constexpr constants, std::hardware_destructive_interference_size and std::hardware_constructive_interference_size, to provide information about the cache-line size. However, these constants have a broader purpose beyond simply getting the L1 cache-line size.

Relationship to L1 Cache Line Size

The intention of these constants is to provide values that represent the optimal offset or limit for data structures to avoid false-sharing or promote true-sharing, respectively. While in theory, these values should align well with the L1 cache-line size, it's not guaranteed to be the case in practice.

Use Cases

These constants can be used in various scenarios:

  • Avoiding Destructive Interference (False-Sharing): By ensuring that objects that experience temporally disjoint access patterns are placed far enough apart in memory (equivalent to hardware_destructive_interference_size), false-sharing can be mitigated.
  • Promoting Constructive Interference (True-Sharing): By allocating objects within a size and alignment that aligns with hardware_constructive_interference_size, it can help to ensure that the objects are placed close together in memory, promoting data sharing and reducing cache misses.

Limitations and Precautions

These constants are defined at compile time and do not necessarily represent the actual cache-line size at runtime. Different machines can have different cache-line sizes.

If maximizing performance is a critical requirement, it's advisable to define a precise cache-line size value using preprocessor macros or by using platform-specific libraries that detect the cache-line size at runtime.

Example Program:

The example program provided demonstrates how these constants can be used effectively. It demonstrates false-sharing by allocating an array of int wrappers with different alignments and a pair of ints with different alignments, showcasing the impact on performance.

The program also includes a utility function, cache_line_size(), which serves as a fallback or can be redefined during compilation to use a known L1 cache-line size if available.

By understanding these constants and using them appropriately, you can optimize your code for efficient memory access and improved performance.

The above is the detailed content of How Do std::hardware_destructive_interference_size and std::hardware_constructive_interference_size Help Optimize Memory Access?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C language data structure: data representation and operation of trees and graphs C language data structure: data representation and operation of trees and graphs Apr 04, 2025 am 11:18 AM

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth behind the C language file operation problem The truth behind the C language file operation problem Apr 04, 2025 am 11:24 AM

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

What are the basic requirements for c language functions What are the basic requirements for c language functions Apr 03, 2025 pm 10:06 PM

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values ​​to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Function name definition in c language Function name definition in c language Apr 03, 2025 pm 10:03 PM

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language multithreaded programming: a beginner's guide and troubleshooting C language multithreaded programming: a beginner's guide and troubleshooting Apr 04, 2025 am 10:15 AM

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

Concept of c language function Concept of c language function Apr 03, 2025 pm 10:09 PM

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

How to output a countdown in C language How to output a countdown in C language Apr 04, 2025 am 08:54 AM

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.

See all articles