Converting String Formats to Datetime Format in Pandas
Pandas provides a convenient way to convert string values representing dates and times into datetime objects. The pd.to_datetime() function can handle a variety of input string formats, automatically detecting the correct format based on the value's contents.
Consider the following column of string values representing dates:
I_DATE 28-03-2012 2:15:00 PM 28-03-2012 2:17:28 PM 28-03-2012 2:50:50 PM
To convert I_DATE to datetime format, simply use pd.to_datetime(df['I_DATE']). Since the format is straightforward, pandas will automatically identify it.
In [51]: pd.to_datetime(df['I_DATE']) Out[51]: 0 2012-03-28 14:15:00 1 2012-03-28 14:17:28 2 2012-03-28 14:50:50 Name: I_DATE, dtype: datetime64[ns]
You can also access specific components of the datetime object using the dt accessor:
In [54]: df['I_DATE'].dt.date Out[54]: 0 2012-03-28 1 2012-03-28 2 2012-03-28 dtype: object In [56]: df['I_DATE'].dt.time Out[56]: 0 14:15:00 1 14:17:28 2 14:50:50 dtype: object
Filtering Data Based on Date Ranges
Once your data is in datetime format, you can easily filter based on date ranges. For example, to filter the df DataFrame for rows where I_DATE falls within a specific range, you can use:
df[(df['I_DATE'] > '2015-02-04') & (df['I_DATE'] < '2015-02-10')] Out[59]: date 35 2015-02-05 36 2015-02-06 37 2015-02-07 38 2015-02-08 39 2015-02-09
The above is the detailed content of How Can Pandas Efficiently Convert String Dates to DateTime Objects and Filter by Date Range?. For more information, please follow other related articles on the PHP Chinese website!