


How Can SSE SIMD Instructions Be Used to Develop a Fast Prefix Sum Algorithm on Intel CPUs?
SIMD Prefix Sum on Intel CPU
Question:
Develop a fast prefix sum algorithm using SSE SIMD CPU instructions.
Answer:
The optimal solution involves two parallel passes:
Pass 1:
- Compute partial sums in parallel using SSE SIMD.
- Store the total sum for each partial sum.
Pass 2:
- Add the total sum from the preceding partial sum to the next partial sum, using SIMD.
Benefits:
- Parallelism reduces computation time in both passes.
- SIMD optimization in Pass 2 further enhances performance.
Implementation Notes:
- The time cost for the algorithm is estimated as (n/m)*(1 1/w), where n is the array size, m is the number of cores, and w is the SIMD width.
- This algorithm is significantly faster than sequential implementations, offering a speed-up factor of around 7 on a quad-core system.
- For large arrays, the second pass can be further optimized by chunking and executing chunks sequentially while keeping data in cache.
Code Example:
__m128 scan_SSE(__m128 x) { x = _mm_add_ps(x, _mm_castsi128_ps(_mm_slli_si128(_mm_castps_si128(x), 4))); x = _mm_add_ps(x, _mm_shuffle_ps(_mm_setzero_ps(), x, 0x40)); return x; } float pass1_SSE(float *a, float *s, const int n) { __m128 offset = _mm_setzero_ps(); #pragma omp for schedule(static) nowait for (int i = 0; i < n / 4; i++) { __m128 x = _mm_load_ps(&a[4 * i]); __m128 out = scan_SSE(x); out = _mm_add_ps(out, offset); _mm_store_ps(&s[4 * i], out); offset = _mm_shuffle_ps(out, out, _MM_SHUFFLE(3, 3, 3, 3)); } float tmp[4]; _mm_store_ps(tmp, offset); return tmp[3]; } void pass2_SSE(float *s, __m128 offset, const int n) { #pragma omp for schedule(static) for (int i = 0; i<n/4; i++) { __m128 tmp1 = _mm_load_ps(&s[4 * i]); tmp1 = _mm_add_ps(tmp1, offset); _mm_store_ps(&s[4 * i], tmp1); } } void scan_omp_SSEp2_SSEp1_chunk(float a[], float s[], int n) { float *suma; const int chunk_size = 1<<18; const int nchunks = n%chunk_size == 0 ? n / chunk_size : n / chunk_size + 1; #pragma omp parallel { const int ithread = omp_get_thread_num(); const int nthreads = omp_get_num_threads(); #pragma omp single { suma = new float[nthreads + 1]; suma[0] = 0; } float offset2 = 0.0f; for (int c = 0; c < nchunks; c++) { const int start = c*chunk_size; const int chunk = (c + 1)*chunk_size < n ? chunk_size : n - c*chunk_size; suma[ithread + 1] = pass1_SSE(&a[start], &s[start], chunk); #pragma omp barrier #pragma omp single { float tmp = 0; for (int i = 0; i < (nthreads + 1); i++) { tmp += suma[i]; suma[i] = tmp; } } __m128 offset = _mm_set1_ps(suma[ithread]+offset2); pass2_SSE(&s[start], offset, chunk); #pragma omp barrier offset2 = s[start + chunk-1]; } } delete[] suma; }
The above is the detailed content of How Can SSE SIMD Instructions Be Used to Develop a Fast Prefix Sum Algorithm on Intel CPUs?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and
