Retrieving the Maximum Value Column Name for Each Row
In a DataFrame consisting of various columns and rows, a common task is to identify the column with the maximum value for each row. Consider the following DataFrame:
Communications and Search Business General Lifestyle<br>0 0.745763 0.050847 0.118644 0.084746<br>0 0.333333 0.000000 0.583333 0.083333<br>0 0.617021 0.042553 0.297872 0.042553<br>0 0.435897 0.000000 0.410256 0.153846<br>0 0.358974 0.076923 0.410256 0.153846<br>
Our goal is to create a new column, labeled as 'Max', which contains the column name associated with the maximum value in each row. The desired output resembles the following:
Communications and Search Business General Lifestyle Max<br>0 0.745763 0.050847 0.118644 0.084746 Communications <br>0 0.333333 0.000000 0.583333 0.083333 Business <br>0 0.617021 0.042553 0.297872 0.042553 Communications <br>0 0.435897 0.000000 0.410256 0.153846 Communications <br>0 0.358974 0.076923 0.410256 0.153846 Business <br>
To accomplish this, we can employ the idxmax function:
import pandas as pd # Create a DataFrame df = pd.DataFrame({ 'Communications and Search': [0.745763, 0.333333, 0.617021, 0.435897, 0.358974], 'Business': [0.050847, 0.000000, 0.042553, 0.000000, 0.076923], 'General': [0.118644, 0.583333, 0.297872, 0.410256, 0.410256], 'Lifestyle': [0.084746, 0.083333, 0.042553, 0.153846, 0.153846] }) # Find the column index with the maximum value in each row max_column_idxs = df.idxmax(axis=1) # Create a new column with the column names df['Max'] = max_column_idxs # Display the updated DataFrame print(df)
By utilizing the idxmax function with the axis parameter set to 1, we determine the column index with the maximum value for each row. This information is then used to create a new column named 'Max', which identifies the corresponding column name for each row's maximum value. The resultant DataFrame exhibits the requested format.
The above is the detailed content of How to retrieve the name of the column with the maximum value for each row in a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!