Home Backend Development Python Tutorial Building a Real-Time Location Tracking Solution with Pulsetracker, Laravel, and Python

Building a Real-Time Location Tracking Solution with Pulsetracker, Laravel, and Python

Nov 28, 2024 pm 07:26 PM

Introduction: What is PulseTracker?

Pulsetracker is a backend service for real-time location tracking, designed specifically for developers who need a robust and flexible way to monitor location data without being tied to proprietary SDKs or infrastructure. It allows developers to implement their own client SDKs using either UDP or WebSocket protocols. Additionally, Pulsetracker can dispatch real-time location updates directly to the developer's backend, making it a powerful choice for applications requiring real-time tracking.

In this tutorial, we’ll walk through using Pulsetracker with a Python script as the listener for real-time location updates. The Python script acts as a Pulsetracker listener that receives updates and dispatches them to a Laravel job handler through Redis, enabling Laravel to process these updates efficiently.

Prerequisites

1.Pulsetracker Account: Set up a Pulsetracker account and get your app key and authorization token.

2.Redis: Ensure you have Redis installed and running.

3.Laravel Project: Set up a Laravel project if you don’t already have one.

Project Setup

This setup involves two main components:

1.Python Script: Listens for location updates from Pulsetracker.

2.Laravel Job: Processes the location data received from the Python script.

Step 1: Setting Up the Python Script

The Python script connects to Pulsetracker’s Pusher service, listens for location updates, and pushes them into a Redis queue for Laravel to handle.

#!/usr/bin/env python

import sys
sys.path.append('..')
import pysher
import time
import logging
import redis
import json 
import uuid

global pusher
global redis

def channel_callback(data):
    messageBody = json.dumps({
        "uuid": str(uuid.uuid4()),
        "displayName": "App\Jobs\PulseLocationUpdatedJob",
        "job": "App\Jobs\PulseLocationUpdatedJob@handle",
        "data": json.loads(data),
        "maxTries": 0,
        "attempts": 0
    })
    # YOUR_APP_NAME_database_queues:QUEUE_NAME
    redis.rpush("pulsetracker_database_queues:geopulse", messageBody)

def connect_handler(data):
    channel = pusher.subscribe("private-apps.<your_app_id>")
    channel.bind('App\Events\DeviceLocationUpdated', channel_callback)

if __name__ == '__main__':

    appkey = "<pusher_app_key_in_our_documentation>"
    auth_endpoint = "https://www.pulsestracker.com/api/broadcasting/auth"

    pusher = pysher.Pusher(
        key=appkey,
        auth_endpoint_headers={            
                "Authorization": "Bearer <your_token>"
        },
        auth_endpoint=auth_endpoint,
        custom_host="pusher.pulsestracker.com",
        secure=True,
    )

    redis = redis.Redis(host='127.0.0.1', port=6379, db=0, password="<your_redis_password>")

    pusher.connection.ping_interval = 30
    pusher.connect()

    pusher.connection.bind('pusher:connection_established', connect_handler)

    while True:
        time.sleep(1)

Copy after login

In this script:

The channel_callback function pushes location updates into a Redis queue.

The connect_handler function subscribes to a specific Pulsetracker channel and binds it to the DeviceLocationUpdated event.

This script should be running continuously to listen for updates and pass them to Redis for Laravel

Step 2: Configuring Laravel

Now, let's create a Laravel job class that will process the updates received from the Python script.

Laravel Job: PulseLocationUpdatedJob

In Laravel, the job class processes data pushed into the Redis queue by the Python listener. Here’s the PulseLocationUpdatedJob class:

<?php

namespace App\Jobs;

use Illuminate\Contracts\Queue\ShouldQueue;
use Illuminate\Foundation\Queue\Queueable;

class PulseLocationUpdatedJob implements ShouldQueue
{
    use Queueable;

    /**
     * Create a new job instance.
     */
    public function __construct()
    {
        //
    }

    /**
     * Execute the job.
     */
    public function handle($job, array $data)
    {
        // Handle the data here, e.g., save to the database
        var_dump($data);

        return $job->delete();
    }
}

Copy after login

Start the Laravel queue worker to begin processing jobs:

php artisan queue:work --queue=geopulse
Copy after login

Results

Building a Real-Time Location Tracking Solution with Pulsetracker, Laravel, and Python

Conclusion

In this setup, the Python listener efficiently streams real-time location data from Pulsetracker to your Redis queue, which Laravel processes as background jobs. This approach enables you to handle high volumes of real-time data, while letting Laravel focus on data persistence and backend tasks.

Resources :
https://fly.io/laravel-bytes/queues-with-other-languages/

The above is the detailed content of Building a Real-Time Location Tracking Solution with Pulsetracker, Laravel, and Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles