


What are the Alternatives to std::vector in C OpenMP Parallel For Loops?
C OpenMP Parallel For Loop: Alternatives to std::vector
std::vector is a versatile data structure commonly used in parallel for loops with OpenMP. However, there are situations where alternatives might be more suitable, particularly when prioritizing speed or encountering issues with resizing during the loop.
One option for a shared data structure is to use a custom reduction with OpenMP 4.0's #pragma omp declare reduction. This reduces the need for critical sections and simplifies parallel code.
Another alternative for preserving order is to employ static scheduling with ordered sections. This ensures that each thread writes to a specific portion of the vector in order, eliminating the need for merging later.
In scenarios where resizing is necessary, a method using pointer arrays for tracking thread-specific prefix sums can be adopted. This approach avoids the overhead of resizing on the critical path.
Here are code examples for these alternatives:
// Custom reduction #pragma omp declare reduction (merge: std::vector<int>: omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()) std::vector<int> vec; #pragma omp parallel for reduction(merge: vec) for (int i = 0; i < 100; i++) vec.push_back(i);
// Static scheduling with ordered sections std::vector<int> vec; #pragma omp parallel { int ithread = omp_get_thread_num(); int nthreads = omp_get_num_threads(); #pragma omp single { prefix = new size_t[nthreads + 1]; prefix[0] = 0; } std::vector<int> vec_private; #pragma omp for schedule(static) nowait for (int i = 0; i < 100; i++) { vec_private.push_back(i); } prefix[ithread + 1] = vec_private.size(); #pragma omp barrier #pragma omp single { for (int i = 1; i < (nthreads + 1); i++) prefix[i] += prefix[i - 1]; vec.resize(vec.size() + prefix[nthreads]); } std::copy(vec_private.begin(), vec_private.end(), vec.begin() + prefix[ithread]); } delete[] prefix;
Selecting the appropriate alternative for your specific case depends on the requirements and performance considerations. Experimentation andprofiling can help determine the most optimal solution.
The above is the detailed content of What are the Alternatives to std::vector in C OpenMP Parallel For Loops?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.
