Hi devs,
Microservices have revolutionized how we build scalable and flexible systems. However, they also introduce complexities, especially when managing distributed transactions across services. That's where the Saga Pattern comes in—a powerful design pattern for handling long-running transactions in microservices. In this post, we’ll explore what the Saga Pattern is, how it works, and see it in action with a Human Resources (HR) use case in C#.
The Saga Pattern breaks a large, distributed transaction into a series of smaller steps, each handled by a specific microservice. These steps are executed in sequence, with compensating actions defined for each step to rollback if something goes wrong.
There are two primary approaches to implementing the Saga Pattern:
The Saga Pattern is particularly useful for microservices architectures where:
Imagine a Human Resources (HR) system where onboarding a new employee involves multiple microservices:
These services must work together to complete the onboarding process. If the Payroll Service fails, the system should undo the account creation and benefits registration.
Let’s implement the Saga Pattern with orchestration for the employee onboarding process.
The Saga Coordinator manages the flow of the transaction. Here’s a basic implementation in C#:
public class SagaCoordinator { private readonly IUserService _userService; private readonly IPayrollService _payrollService; private readonly IBenefitsService _benefitsService; public SagaCoordinator(IUserService userService, IPayrollService payrollService, IBenefitsService benefitsService) { _userService = userService; _payrollService = payrollService; _benefitsService = benefitsService; } public async Task ExecuteOnboardingSagaAsync(Employee employee) { try { Console.WriteLine("Starting onboarding saga..."); // Step 1: Create user account await _userService.CreateUserAsync(employee); // Step 2: Set up payroll await _payrollService.SetupPayrollAsync(employee); // Step 3: Register benefits await _benefitsService.RegisterBenefitsAsync(employee); Console.WriteLine("Onboarding completed successfully!"); } catch (Exception ex) { Console.WriteLine($"Error during onboarding: {ex.Message}"); await CompensateAsync(employee); } } private async Task CompensateAsync(Employee employee) { Console.WriteLine("Compensating..."); await _benefitsService.RollbackBenefitsAsync(employee); await _payrollService.RollbackPayrollAsync(employee); await _userService.DeleteUserAsync(employee); Console.WriteLine("Compensation complete."); } }
Each service implements its specific logic and compensating actions.
public interface IUserService { Task CreateUserAsync(Employee employee); Task DeleteUserAsync(Employee employee); } public interface IPayrollService { Task SetupPayrollAsync(Employee employee); Task RollbackPayrollAsync(Employee employee); } public interface IBenefitsService { Task RegisterBenefitsAsync(Employee employee); Task RollbackBenefitsAsync(Employee employee); }
Implementations of these interfaces would interact with databases or other APIs.
Here’s how you can use the Saga Coordinator:
public class SagaCoordinator { private readonly IUserService _userService; private readonly IPayrollService _payrollService; private readonly IBenefitsService _benefitsService; public SagaCoordinator(IUserService userService, IPayrollService payrollService, IBenefitsService benefitsService) { _userService = userService; _payrollService = payrollService; _benefitsService = benefitsService; } public async Task ExecuteOnboardingSagaAsync(Employee employee) { try { Console.WriteLine("Starting onboarding saga..."); // Step 1: Create user account await _userService.CreateUserAsync(employee); // Step 2: Set up payroll await _payrollService.SetupPayrollAsync(employee); // Step 3: Register benefits await _benefitsService.RegisterBenefitsAsync(employee); Console.WriteLine("Onboarding completed successfully!"); } catch (Exception ex) { Console.WriteLine($"Error during onboarding: {ex.Message}"); await CompensateAsync(employee); } } private async Task CompensateAsync(Employee employee) { Console.WriteLine("Compensating..."); await _benefitsService.RollbackBenefitsAsync(employee); await _payrollService.RollbackPayrollAsync(employee); await _userService.DeleteUserAsync(employee); Console.WriteLine("Compensation complete."); } }
The Saga Pattern is a critical design pattern for maintaining data consistency in distributed systems like microservices. In our HR example, it ensured the entire onboarding process either completed successfully or rolled back gracefully, preserving system integrity.
By leveraging patterns like Saga, we can design robust systems that handle the complexities of distributed transactions.
Keep coding
The above is the detailed content of The Saga Pattern in Microservices. For more information, please follow other related articles on the PHP Chinese website!