Plotting Multiple DataFrames in Subplots with Pandas and Matplotlib
When working with Pandas DataFrames, it's often necessary to visualize multiple datasets simultaneously. While df.plot() provides a convenient way to plot individual DataFrames, it doesn't offer the ability to combine them into subplots.
Question:
How can we plot multiple Pandas DataFrames in subplots, using Matplotlib or any other Python library?
Answer:
For plotting multiple DataFrames in subplots, we can manually create the subplots using Matplotlib and then use the ax keyword to specify the target subplot for each DataFrame.
Implementation:
import matplotlib.pyplot as plt # Generate some sample data df1 = pd.DataFrame({'a': range(10), 'b': range(10, 20)}) df2 = pd.DataFrame({'c': range(20, 30), 'd': range(30, 40)}) # Create a figure fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True) # Plot dataframes on subplots df1.plot(ax=axes[0,0]) df2.plot(ax=axes[0,1]) # ... (repeat for other DataFrames) # Show the plot plt.show()
In the above example:
The above is the detailed content of How to Plot Multiple Pandas DataFrames in Matplotlib Subplots?. For more information, please follow other related articles on the PHP Chinese website!