


Why is Populating a Pandas DataFrame Row-by-Row Inefficient, and What\'s a Better Approach?
Creating and Populating an Empty Pandas DataFrame
Conceptually, one may want to start by creating an empty DataFrame and then incrementally fill it with values. However, this approach is inefficient and prone to causing performance issues.
The Pitfalls of Growing a DataFrame Row-wise
Iteratively appending rows to an empty DataFrame is computationally expensive. It leads to quadratic complexity operations due to the dynamic memory allocation and reassignment required. This can severely impact performance, especially when dealing with large datasets.
An Alternative Approach: Accumulating Data in a List
Instead of growing a DataFrame row-wise, it's recommended to accumulate data in a list. This has several advantages:
- It is more efficient and significantly faster.
- Lists have a smaller memory footprint compared to DataFrames.
- Data types are automatically inferred, eliminating the need for manual adjustments.
- Lists support appending operations without altering memory allocation.
Creating a DataFrame from a List
Once data has been accumulated in a list, a DataFrame can be easily created by converting the list using pd.DataFrame(). This ensures proper data type inference and automates setting a RangeIndex for the DataFrame.
Example
Consider the scenario described in the question. The following code demonstrates how to accumulate data in a list and then create a DataFrame:
import pandas as pd data = [] dates = [pd.to_datetime(f"2023-08-{day}") for day in range(10, 0, -1)] valdict = {'A': [], 'B': [], 'C': []} # Initialize symbol value lists for date in dates: for symbol in valdict: if date == dates[0]: valdict[symbol].append(0) else: valdict[symbol].append(1 + valdict[symbol][-1]) # Create a DataFrame from the accumulated data df = pd.DataFrame(valdict, index=dates)
This approach ensures efficient data accumulation and seamless DataFrame creation without any performance overhead or concerns about object columns.
The above is the detailed content of Why is Populating a Pandas DataFrame Row-by-Row Inefficient, and What\'s a Better Approach?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
