When working with Pyspark, it can be necessary to convert a string column representing dates into a DateType column. This is commonly encountered when the data is ingested as strings.
To illustrate this, consider the following DataFrame with a string column named STRING_COLUMN in the format MM-dd-yyyy:
df = spark.createDataFrame([ ("01-01-2023",), ("01-02-2023",), ("01-03-2023",), ], ["STRING_COLUMN"]) df.show()
To convert the STRING_COLUMN into a DateType column, one method is to use the to_date() function, as suggested in the original attempt:
df.select(to_date(df.STRING_COLUMN).alias("new_date")).show()
However, this approach may result in a column filled with nulls. To address this, consider using one of the following methods:
1. to_timestamp Function (Spark 2.2 ):
Starting with Spark 2.2, the to_timestamp() function provides a more efficient and straightforward way to convert strings to timestamps. It supports specifying the input format using the format argument:
df.select(to_timestamp(df.STRING_COLUMN, "MM-dd-yyyy").alias("new_date")).show()
2. unix_timestamp and from_unixtime Functions (Spark < 2.2):
For Spark versions prior to 2.2, a combination of unix_timestamp and from_unixtime functions can be used:
from pyspark.sql.functions import unix_timestamp, from_unixtime df.select( from_unixtime(unix_timestamp(df.STRING_COLUMN, "MM-dd-yyyy")).alias("new_date") ).show()
In both cases, the show() method can be used to display the converted DateType column.
The above is the detailed content of How to Efficiently Convert a Pyspark String Column to a Date Column?. For more information, please follow other related articles on the PHP Chinese website!