Home Backend Development Python Tutorial How to Efficiently Construct a Pandas DataFrame from a Nested Dictionary with a Hierarchical Index?

How to Efficiently Construct a Pandas DataFrame from a Nested Dictionary with a Hierarchical Index?

Dec 01, 2024 am 09:27 AM

How to Efficiently Construct a Pandas DataFrame from a Nested Dictionary with a Hierarchical Index?

Constructing a Pandas DataFrame from Nested Dictionaries

When working with nested dictionaries, it can be challenging to convert the data into a pandas DataFrame in a way that aligns with desired structure. In particular, extracting data from the deepest level of the dictionary as series can be cumbersome.

Suppose you have a dictionary structured as follows:

  • Level 1: UserId (Long Integer)
  • Level 2: Category (String)
  • Level 3: Assorted Attributes (floats, ints, etc.)

The goal is to construct a DataFrame with a hierarchical index using the data from the third level of the dictionary.

Using a MultiIndex

A pandas MultiIndex is a convenient way to represent hierarchical data in a DataFrame. To create a MultiIndex from the nested dictionary, reshape the keys into tuples corresponding to the multi-index values.

user_dict = {12: {'Category 1': {'att_1': 1, 'att_2': 'whatever'},
                  'Category 2': {'att_1': 23, 'att_2': 'another'}},
             15: {'Category 1': {'att_1': 10, 'att_2': 'foo'},
                  'Category 2': {'att_1': 30, 'att_2': 'bar'}}}

df = pd.DataFrame.from_dict({(i,j): user_dict[i][j] 
                           for i in user_dict.keys() 
                           for j in user_dict[i].keys()},
                       orient='index')
Copy after login

This approach will create a DataFrame with a hierarchical index, where the first level contains the UserIds and the second level contains the Categories. The data from the third level is now organized into series accessible using both the UserId and Category as index.

Alternative Approach using Concatenation

Another way to construct the DataFrame is by concatenating component dataframes.

user_ids = []
frames = []

for user_id, d in user_dict.iteritems():
    user_ids.append(user_id)
    frames.append(pd.DataFrame.from_dict(d, orient='index'))

df = pd.concat(frames, keys=user_ids)
Copy after login

This method iterates over the dictionary, creating a DataFrame for each user_id and category combination. The resulting dataframes are then concatenated vertically and joined using keys as the hierarchical index.

The above is the detailed content of How to Efficiently Construct a Pandas DataFrame from a Nested Dictionary with a Hierarchical Index?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles