Taking Subarrays from Numpy Array with Stride/Stepsize
In this context, we discuss an efficient approach in Python NumPy to create subarrays from a given array with a specific stride.
To achieve this, we explore two methods:
1. Broadcasting Approach:
def broadcasting_app(a, L, S): nrows = ((a.size - L) // S) + 1 return a[S * np.arange(nrows)[:, None] + np.arange(L)]
In this method, broadcasting is used to create a matrix of strides.
2. Efficient NumPy Strides Approach:
def strided_app(a, L, S): nrows = ((a.size - L) // S) + 1 n = a.strides[0] return np.lib.stride_tricks.as_strided(a, shape=(nrows, L), strides=(S * n, n))
This method utilizes NumPy's efficient strides to create the subarray matrix.
Example:
Consider an array a:
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
To create subarrays of length 5 with a stride of 3, we can use either of the methods:
subarrays_broadcasting = broadcasting_app(a, L=5, S=3) subarrays_strides = strided_app(a, L=5, S=3)
Both approaches will produce the following result:
[[ 1 2 3 4 5] [ 4 5 6 7 8] [ 7 8 9 10 11]]
The above is the detailed content of How to Efficiently Create Subarrays from a NumPy Array with a Stride?. For more information, please follow other related articles on the PHP Chinese website!