Home Backend Development Python Tutorial Simple Python Logging - and a digression on dependencies, trust, and Copy/pasting code

Simple Python Logging - and a digression on dependencies, trust, and Copy/pasting code

Dec 03, 2024 am 07:20 AM

Simple Python Logging - and a digression on dependencies, trust, and Copy/pasting code

Header Image (C) Tai Kedzierski

Goto Snippet

This post is opinionated.

Python's default log setup is unhelpful; it works against the "batteries included" approach we have come to expect.

From a useful log message, I want to know when, what level, and what information. I may want it on console, I may want it in a file.

This should be simple - but in Python I end up every time having to look up how to create a full logging utility with custom file handling and string formatting.

It should be as simple as logger = getLogger(), but the default behaviour for some unknown reason is to provide a completely useless formatting, and no shorthand for a sensible default.

That or I need to download some pip package of unknown provenance, trust that it hasn't been name-hijacked, or doing some obfuscated exfilration. The leftpad incident from 2016 comes to mind, as well as the Revival hijack attack from 2024 which was essentially the same problem in a different repo system.

In fact, any user-repo without namespacing is vulnerable to this: Node's npm, Python's pip, Arch's AUR, Canonical's snap ... to name a handful who just let users upload whatever. Even namespacing isn't a guarantee of trust - I've come across projects that distribute their software through these channels not through the project's name, but via some arbitrary dev's monicker, raising doubt as to the authenticity of the package. I gave my thought process on how to decide on whether to trust a source in a previous post on using syncthing in a work environment.

External dependencies in user-controlled repos are the devil, and should only be considered when the solution to a problem is complex. And in general, simple solutions should just exist directly in the code base - ideally self-written, but sometimes the problem just strafes into the "cumbersome enough" space to make a dependency feel both reasonable and icky.

The answer: write it once, stash it away in a Github gist or in a "useful snippets" repo of your own. Copy and paste.

Copy Paste? Ew!

"Copy and paste" of code probably sends alarm bells ringing for any seasoned coder. "Don't repeat yourself," "use a package manager," "write once, update everywhere." These are good instincts to have, but case-by-case, it is also good to know when copy-paste is preferable.

In this case, the requirement is to avoid unnecessary external dependencies for a simple solution to a simple need . In leftpad as with this mini-logger, the required code snippet is short and easy to understand ; it is no loss to reimplement if needed. It is also appropriately licensed (yes, it may be just a snippet; it remains however recommendable to ensure that what you are copying is indeed allowable. Be wary of copying random blobs of code.)

Mini Logger Snippet

I include below a code snippet for a mini-logger utility which allows for a single call with minimal configuration:

from minilog import SimpleLogger

LOG = SimpleLogger(name="mylog", level=SimpleLogger.INFO)

LOG.info("this is useful")
Copy after login

Which prints to console:

2024-11-20 10:43:44,567 | INFO | mylog : this is useful
Copy after login

The mini-logger code

Copy this into a minilogger.py file in your project. Tada - no external dependency needed. Left untouched, it will remain the same forever. No name hijacking. No supply-chain injection.

# For completeness:
# (C) Tai Kedzierski - Provided under MIT license. Go wild.

import logging

class SimpleLogger(logging.Logger):
    FORMAT_STRING = '%(asctime)s | %(levelname)s | %(name)s : %(message)s'
    ERROR = logging.ERROR
    WARN = logging.WARN
    INFO = logging.INFO
    DEBUG = logging.DEBUG

    def __init__(self, name="main", fmt_string=FORMAT_STRING, level=logging.WARNING, console=True, files=None):
        logging.Logger.__init__(self, name, level)
        formatter_obj = logging.Formatter(fmt_string)

        if files is None:
            files = []
        elif isinstance(files, str):
            files = [files]

        def _add_stream(handler:logging.Handler, **kwargs):
            handler = handler(**kwargs)
            handler.setLevel(level)
            handler.setFormatter(formatter_obj)
            self.addHandler(handler)

        if console is True:
            _add_stream(logging.StreamHandler, stream=sys.stdout)

        for filepath in files:
            _add_stream(logging.FileHandler, filename=filepath)
Copy after login

The MIT license essentially allows you to "do whatever you want with this." No strings attached.

There we are. A simple log ?

The above is the detailed content of Simple Python Logging - and a digression on dependencies, trust, and Copy/pasting code. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles