Loading data into a Pandas DataFrame is a common task for data analysis and manipulation. One of the most straightforward ways to accomplish this is by reading data from a CSV file. Here's how to achieve this:
The pandas.read_csv function provides a convenient method for reading CSV files into Pandas DataFrames. Consider the following CSV file:
Date,"price","factor_1","factor_2" 2012-06-11,1600.20,1.255,1.548 2012-06-12,1610.02,1.258,1.554 2012-06-13,1618.07,1.249,1.552 2012-06-14,1624.40,1.253,1.556 2012-06-15,1626.15,1.258,1.552 2012-06-16,1626.15,1.263,1.558 2012-06-17,1626.15,1.264,1.572
To import this data into a DataFrame, we can use the following Python code:
import pandas as pd # Specify the file path file_path = "data.csv" # Read the CSV file into a DataFrame df = pd.read_csv(file_path) # Print the DataFrame print(df)
This code will create a Pandas DataFrame with the following structure:
Date | price | factor_1 | factor_2 |
---|---|---|---|
2012-06-11 | 1600.20 | 1.255 | 1.548 |
2012-06-12 | 1610.02 | 1.258 | 1.554 |
2012-06-13 | 1618.07 | 1.249 | 1.552 |
2012-06-14 | 1624.40 | 1.253 | 1.556 |
2012-06-15 | 1626.15 | 1.258 | 1.552 |
2012-06-16 | 1626.15 | 1.263 | 1.558 |
2012-06-17 | 1626.15 | 1.264 | 1.572 |
The above is the detailed content of How to Import CSV Data into a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!