Home > Backend Development > Python Tutorial > How to Convert a Pandas DataFrame to a Dictionary with Different Orientations?

How to Convert a Pandas DataFrame to a Dictionary with Different Orientations?

Linda Hamilton
Release: 2024-12-06 03:57:12
Original
1019 people have browsed it

How to Convert a Pandas DataFrame to a Dictionary with Different Orientations?

Converting a Pandas DataFrame to a Dictionary

To convert a Pandas DataFrame to a dictionary, use the to_dict() method. By default, this method uses the DataFrame's column names as dictionary keys and creates a dictionary of index:data pairs for each column.

df.to_dict()
Copy after login

Customizing the Dictionary Output

To obtain a list of values for each column instead of a dictionary of index:data pairs, use the orient argument. Here are the available orientations:

  • dict: Default orientation (column names as keys, index:data pairs as values)
  • list: Keys are column names, values are lists of column data
  • series: Keys are column names, values are Series objects containing the data
  • split: Splits columns/data/index into separate keys
  • records: Each row becomes a dictionary with column names as keys and data values as values
  • index: Similar to 'records', but keys are index labels instead of a list

Example

Consider the following DataFrame:

df = pd.DataFrame({'ID': ['p', 'q', 'r'], 'A': [1, 4, 4], 'B': [3, 3, 0], 'C': [2, 2, 9]})
Copy after login

To convert this DataFrame to a dictionary with 'ID' as keys and the other columns' values as lists, use the following code:

df.set_index('ID').T.to_dict('list')
Copy after login

This will return the following dictionary:

{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}
Copy after login

Other Orientations

Here are examples of the different orientations:

dict:

df.to_dict('dict')
Copy after login

Output:

{'ID': {'p': 'p', 'q': 'q', 'r': 'r'},
 'A': {0: 1, 1: 4, 2: 4},
 'B': {0: 3, 1: 3, 2: 0},
 'C': {0: 2, 1: 2, 2: 9}}
Copy after login

list:

df.to_dict('list')
Copy after login

Output:

{'ID': ['p', 'q', 'r'], 'A': [1, 4, 4], 'B': [3, 3, 0], 'C': [2, 2, 9]}
Copy after login

series:

df.to_dict('series')
Copy after login

Output:

{'ID': 0    p
 1    q
 2    r
 Name: ID, dtype: object,
 'A': 0    1
 1    4
 2    4
 Name: A, dtype: int64,
 'B': 0    3
 1    3
 2    0
 Name: B, dtype: int64,
 'C': 0    2
 1    2
 2    9
 Name: C, dtype: int64}
Copy after login

split:

df.to_dict('split')
Copy after login

Output:

{'columns': ['ID', 'A', 'B', 'C'], 'data': [['p', 1, 3, 2], ['q', 4, 3, 2], ['r', 4, 0, 9]], 'index': [0, 1, 2]}
Copy after login

records:

df.to_dict('records')
Copy after login

Output:

[{'ID': 'p', 'A': 1, 'B': 3, 'C': 2}, {'ID': 'q', 'A': 4, 'B': 3, 'C': 2}, {'ID': 'r', 'A': 4, 'B': 0, 'C': 9}]
Copy after login

index:

df.to_dict('index')
Copy after login

Output:

{0: {'ID': 'p', 'A': 1, 'B': 3, 'C': 2},
 1: {'ID': 'q', 'A': 4, 'B': 3, 'C': 2},
 2: {'ID': 'r', 'A': 4, 'B': 0, 'C': 9}}
Copy after login

The above is the detailed content of How to Convert a Pandas DataFrame to a Dictionary with Different Orientations?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template