How to Maintain a Fixed Number of Concurrent Goroutines in Go?
Maintaining a Fixed Number of Concurrent Goroutines
In Go, you may encounter scenarios where controlling the number of concurrently running goroutines is crucial. While tutorials often focus on waiting for goroutines to complete, achieving a specific number of active goroutines at any given time presents a different challenge.
Consider the following situation: you have hundreds of thousands of tasks to process. Processing each task requires its own goroutine, but your system resources can only handle a maximum of 20 concurrent goroutines. You need to ensure that there are always 20 goroutines running, launching a new one whenever an existing one completes.
Bounded Parallelism
To achieve this, the Go Concurrency Patterns article suggests using a pattern called "Bounded Parallelism." It involves using a channel of empty structs as a guard to limit the number of concurrent workers.
Implementation
Here's an example that demonstrates how to implement this pattern:
package main import ( "fmt" "sync" ) func main() { const maxGoroutines = 20 // Create a channel of empty structs to control worker count guard := make(chan struct{}, maxGoroutines) var wg sync.WaitGroup // Launch workers for i := 0; i < 30; i++ { wg.Add(1) guard <- struct{}{} // Blocks if guard channel is filled go func(n int) { defer wg.Done() worker(n) <-guard // Release slot in guard channel }(i) } wg.Wait() } func worker(i int) { fmt.Println("doing work on", i) }
In this example, the guard channel is used as a token bucket. The maximum number of goroutines that can run concurrently is limited by the capacity of the channel (20 in this case). Each goroutine acquires a "token" (an empty struct) from the channel before starting work. When a goroutine finishes, it releases its token back into the channel, making it available for another goroutine to acquire. By controlling the number of tokens in the channel, you effectively control the number of concurrent goroutines.
The above is the detailed content of How to Maintain a Fixed Number of Concurrent Goroutines in Go?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.
