How to Efficiently Sort a Vector of Pairs by the Second Element?
How to Efficiently Sort a Vector of Pairs by Pair's Second Element
This article addresses the question of sorting a vector of pairs based on the second element of each pair in ascending order. While creating a custom function object for this task is a viable solution, there are alternative methods that utilize existing STL components and std::less.
Using std::sort with a Custom Comparator
One approach is to employ a custom comparator as an optional third argument to std::sort. This custom comparator, called sort_pred, is defined as follows:
struct sort_pred { bool operator()(const std::pair<int,int> &left, const std::pair<int,int> &right) { return left.second < right.second; } };
To utilize this comparator, simply pass it to std::sort:
std::sort(v.begin(), v.end(), sort_pred());
Using C 11 Lambdas
If using a C 11 compiler, you can leverage lambdas in place of a custom comparator:
std::sort(v.begin(), v.end(), [](const std::pair<int,int> &left, const std::pair<int,int> &right) { return left.second < right.second; });
Using a Generic Template for Pair Sorting
For greater flexibility and reusability, you can create a generic template called sort_pair_second:
template <class T1, class T2, class Pred = std::less<T2> > struct sort_pair_second { bool operator()(const std::pair<T1,T2>&left, const std::pair<T1,T2>&right) { Pred p; return p(left.second, right.second); } };
With this template, you can achieve the desired sorting as follows:
std::sort(v.begin(), v.end(), sort_pair_second<int, int>());
The above is the detailed content of How to Efficiently Sort a Vector of Pairs by the Second Element?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.
