Why is My Loop Slow When Processing 8192 Elements?
Why Performance Drops When Looping Over 8192 Elements
When looping over 8192 elements, the program encounters a significant slowdown. This is attributed to a memory alignment issue, exacerbated by an inefficient loop structure.
Memory Alignment
Modern processors utilize cache hierarchies to improve data access speed. Aligned memory accesses, where data is stored at addresses that are multiples of the cache line size, allow for faster data retrieval. However, in this case, the SIZE parameter is defined as 8192, which is not a multiple of the cache line size (typically 64 bytes). This misalignment can slow down memory access operations.
Loop Ordering
Compounding the memory alignment issue is the ordering of the loops. The original code iterates over the matrix column-wise, resulting in non-sequential memory accesses. This forces the processor to perform slower, random retrievals of data from memory.
Solution
There are two possible solutions:
- Align the memory: Redefine SIZE to a multiple of the cache line size (e.g., 8192 64).
- Interchange loop ordering: Instead of column-wise iteration, iterate over the matrix row-wise. This aligns memory accesses with the cache line organization, allowing for faster and more efficient data retrieval.
By interchanging the loop ordering in the code, the performance bottleneck is eliminated.
Example
The following code illustrates the fix:
for(j=1;j<SIZE-1;j++) { for(i=1;i<SIZE-1;i++) { res[j][i]=0; res[j][i] += img[j-1][i-1]; ... } }
Performance Comparison
After applying the fix, the performance improves significantly:
Original Code:
SIZE = 8191: 1.499 seconds SIZE = 8192: 2.122 seconds SIZE = 8193: 1.582 seconds
Fixed Code:
SIZE = 8191: 0.376 seconds SIZE = 8192: 0.357 seconds SIZE = 8193: 0.351 seconds
The above is the detailed content of Why is My Loop Slow When Processing 8192 Elements?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.
