Home Backend Development Golang Building Robust SQL Transaction Execution in Go with a Generic Framework

Building Robust SQL Transaction Execution in Go with a Generic Framework

Dec 11, 2024 am 10:04 AM

Building Robust SQL Transaction Execution in Go with a Generic Framework

When working with SQL databases in Go, ensuring atomicity and managing rollbacks during multi-step transactions can be challenging. In this article, I'll guide you through creating a robust, reusable, and testable framework for executing SQL transactions in Go, using generics for flexibility.

We'll build a SqlWriteExec utility for executing multiple dependent database operations within a transaction. It supports both stateless and stateful operations, enabling sophisticated workflows like inserting related entities while managing dependencies seamlessly.

Why Do We Need a Framework for SQL Transactions?

In real-world applications, database operations are rarely isolated. Consider these scenarios:

Inserting a user and updating their inventory atomically.
Creating an order and processing its payment, ensuring consistency.
With multiple steps involved, managing rollbacks during failures becomes crucial to ensure data integrity.

Working with go in Txn management.

If you are writing a database txn there might be several boiler plates that you might need to consider before writing the core logic. While this txn management is managed by spring boot in java and you never bothered much on those while writing code in java but this is not the case in golang. A simple example is provided below

func basicTxn(db *sql.DB) error {
    // start a transaction
    tx, err := db.Begin()
    if err != nil {
        return err
    }
    defer func() {
        if r := recover(); r != nil {
            tx.Rollback()
        } else if err != nil {
            tx.Rollback()
        } else {
            tx.Commit()
        }
    }()

    // insert data into the orders table
    _, err = tx.Exec("INSERT INTO orders (id, customer_name, order_date) VALUES (1, 'John Doe', '2022-01-01')")
    if err != nil {
        return err
    }
    return nil
}
Copy after login

We cannot expect to repeat the rollback/commit code for every function. We have two options here either create a class which will provide a function as a return type which when executed in the defer will commit/rollback txn or create a wrapper class which will wrap all txn funcs together and execute in one go.

I went with the later choice and the change in code can be seen below.

func TestSqlWriteExec_CreateOrderTxn(t *testing.T) {

    db := setupDatabase()
    // create a new SQL Write Executor
    err := dbutils.NewSqlTxnExec[OrderRequest, OrderProcessingResponse](context.TODO(), db, nil, &OrderRequest{CustomerName: "CustomerA", ProductID: 1, Quantity: 10}).
        StatefulExec(InsertOrder).
        StatefulExec(UpdateInventory).
        StatefulExec(InsertShipment).
        Commit()
    // check if the transaction was committed successfully
    if err != nil {
        t.Fatal(err)
        return
    }
    verifyTransactionSuccessful(t, db)
    t.Cleanup(
        func() { 
            cleanup(db)
            db.Close() 
        },
    )
}
Copy after login
func InsertOrder(ctx context.Context, txn *sql.Tx, order *OrderRequest, orderProcessing *OrderProcessingResponse) error {
    // Insert Order
    result, err := txn.Exec("INSERT INTO orders (customer_name, product_id, quantity) VALUES (, , )", order.CustomerName, order.ProductID, order.Quantity)
    if err != nil {
        return err
    }
    // Get the inserted Order ID
    orderProcessing.OrderID, err = result.LastInsertId()
    return err
}

func UpdateInventory(ctx context.Context, txn *sql.Tx, order *OrderRequest, orderProcessing *OrderProcessingResponse) error {
    // Update Inventory if it exists and the quantity is greater than the quantity check if it exists
    result, err := txn.Exec("UPDATE inventory SET product_quantity = product_quantity -  WHERE id =  AND product_quantity >= ", order.Quantity, order.ProductID)
    if err != nil {
        return err
    }
    // Get the number of rows affected
    rowsAffected, err := result.RowsAffected()
    if rowsAffected == 0 {
        return errors.New("Insufficient inventory")
    }
    return err
}

func InsertShipment(ctx context.Context, txn *sql.Tx, order *OrderRequest, orderProcessing *OrderProcessingResponse) error {
    // Insert Shipment
    result, err := txn.Exec("INSERT INTO shipping_info (customer_name, shipping_address) VALUES (, 'Shipping Address')", order.CustomerName)
    if err != nil {
        return err
    }
    // Get the inserted Shipping ID
    orderProcessing.ShippingID, err = result.LastInsertId()
    return err
}
Copy after login

This code will be very much more precise and concise.

How the core logic is implemented

The idea is to isolate the txn to a single go struct such that it can accept multiple txns. By txn I mean functions which will do action with the txn that we created for the class.

type TxnFn[T any] func(ctx context.Context, txn *sql.Tx, processingReq *T) error
type StatefulTxnFn[T any, R any] func(ctx context.Context, txn *sql.Tx, processingReq *T, processedRes *R) error
Copy after login

These two are function types which will take in a txn to process something. Now in the data layer implementing a create a function like this and pass it to the executor class which takes care of injecting the args and executing the function.

// SQL Write Executor is responsible when executing write operations
// For dependent writes you may need to add the dependent data to processReq and proceed to the next function call
type SqlTxnExec[T any, R any] struct {
    db               *sql.DB
    txn              *sql.Tx
    txnFns         []TxnFn[T]
    statefulTxnFns []StatefulTxnFn[T, R]
    processingReq    *T
    processedRes     *R
    ctx              context.Context
    err              error
}
Copy after login

This is where we store all the txn_fn details and we will have Commit() method to try committing the txn.

func (s *SqlTxnExec[T, R]) Commit() (err error) {
    defer func() {
        if p := recover(); p != nil {
            s.txn.Rollback()
            panic(p)
        } else if err != nil {
            err = errors.Join(err, s.txn.Rollback())
        } else {
            err = errors.Join(err, s.txn.Commit())
        }
        return
    }()

    for _, writeFn := range s.txnFns {
        if err = writeFn(s.ctx, s.txn, s.processingReq); err != nil {
            return
        }
    }

    for _, statefulWriteFn := range s.statefulTxnFns {
        if err = statefulWriteFn(s.ctx, s.txn, s.processingReq, s.processedRes); err != nil {
            return
        }
    }
    return
}
Copy after login

You can find more examples and tests in the repo -
https://github.com/mahadev-k/go-utils/tree/main/examples

Though we bias towards distributed systems and consensus protocol nowadays, we still use sql and it still exists.

Let me know if anyone wish to contribute and build on top of this!!
Thanks for reading this far!!
https://in.linkedin.com/in/mahadev-k-934520223
https://x.com/mahadev_k_

The above is the detailed content of Building Robust SQL Transaction Execution in Go with a Generic Framework. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What are the vulnerabilities of Debian OpenSSL What are the vulnerabilities of Debian OpenSSL Apr 02, 2025 am 07:30 AM

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

What libraries are used for floating point number operations in Go? What libraries are used for floating point number operations in Go? Apr 02, 2025 pm 02:06 PM

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

What is the problem with Queue thread in Go's crawler Colly? What is the problem with Queue thread in Go's crawler Colly? Apr 02, 2025 pm 02:09 PM

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

PostgreSQL monitoring method under Debian PostgreSQL monitoring method under Debian Apr 02, 2025 am 07:27 AM

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

In Go, why does printing strings with Println and string() functions have different effects? In Go, why does printing strings with Println and string() functions have different effects? Apr 02, 2025 pm 02:03 PM

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? Apr 02, 2025 pm 04:54 PM

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

How to specify the database associated with the model in Beego ORM? How to specify the database associated with the model in Beego ORM? Apr 02, 2025 pm 03:54 PM

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

See all articles