


How to Efficiently Count Term Occurrences within Groups in a Pandas DataFrame?
Grouping by Term Counts in a Pandas Dataframe
Problem:
Given a dataframe with the following columns: id, group, and term. The goal is to determine the number of occurrences of each term within each unique combination of id and group.
Solution:
To avoid using loops, utilize the groupby and size functions in Pandas:
The groupby function groups the dataframe by the specified columns (id, group, and term), while the size function counts the occurrences of each combination. The unstack function produces a more visually appealing table with the counts arranged in a matrix.
The result is a table with multi-index columns where the first two levels represent the combination of id and group, and the third level corresponds to the term. Each cell in the table shows the number of times a particular term appears for the corresponding id and group.
Timing:
For large datasets (e.g., 1,000,000 rows), the performance is excellent:
Using the aforementioned approach, the elapsed time is approximately 1 second.
The above is the detailed content of How to Efficiently Count Term Occurrences within Groups in a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Fastapi ...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...
