How to Isolate Non-NaN Values in a Column of a Pandas DataFrame
Question:
Consider a DataFrame like this:
STK_ID RPT_Date <br>601166 20111231 601166 NaN NaN<br>600036 20111231 600036 NaN 12<br>600016 20111231 600016 4.3 NaN<br>601009 20111231 601009 NaN NaN<br>601939 20111231 601939 2.5 NaN<br>000001 20111231 000001 NaN NaN<br>
Goal:
Isolate the records where the "EPS" column is not NaN, resulting in this DataFrame:
STK_ID RPT_Date <br>600016 20111231 600016 4.3 NaN<br>601939 20111231 601939 2.5 NaN<br>
Solution:
Instead of dropping rows, you can filter the DataFrame using the notna() method to select only the rows where the "EPS" column is not NaN:
df = df[df['EPS'].notna()]
This will create a new DataFrame with the desired result.
The above is the detailed content of How to Filter a Pandas DataFrame to Keep Only Rows with Non-NaN Values in a Specific Column?. For more information, please follow other related articles on the PHP Chinese website!