


How Does Go Handle Captured Loop Variables in Closures, and Why Does it Matter?
Captured Closure (for Loop Variable) in Go
Understanding Loop Variable Closures
In Go, the compiler can automatically capture loop variables for use within closures, but this behavior varies depending on the type of loop. In for...range loops, the loop variables are captured as references to the outer loop's iteration variables.
Reason for Reference Closures in for...range Loops
Go treats for...range loops and other for loops similarly. Therefore, the captured closure for a loop variable in a for...range loop references the same memory location as the outer loop's variable.
Consequences of Reference Closures
In this scenario, any modifications made to the captured closure's variable also affect the outer loop's variable, potentially leading to unexpected behavior. To avoid this issue, it's necessary to create a copy of the loop variable within the closure, as shown in the "Value...range" example below.
Example Code
The provided code snippet illustrates the difference between capturing a reference to the loop variable versus capturing its value:
func main() { lab1() // captured closure is not what is expected lab2() // captured closure is not what is expected lab3() // captured closure behaves ok } func lab3() { m := make(map[int32]int32) for i := 1; i <= 10; i++ { m[i] = i } l := [](func() (int32, int32)){} for k, v := range m { kLocal, vLocal := k, v // (C) captures just the right values assigned to k and v l = append(l, func() (int32, int32) { return kLocal, vLocal }) } for _, x := range l { k, v := x() fmt.Println(k, v) } } func lab2() { m := make(map[int32]int32) for i := 1; i <= 10; i++ { m[i] = i } l := [](func() (int32, int32)){} for k, v := range m { l = append(l, func() (int32, int32) { kLocal, vLocal := k, v // (B) captures just the last values assigned to k and v from the range return kLocal, vLocal }) } for _, x := range l { k, v := x() fmt.Println(k, v) } } func lab1() { m := make(map[int32]int32) for i := 1; i <= 10; i++ { m[i] = i } l := [](func() (int32, int32)){} for k, v := range m { l = append(l, func() (int32, int32) { return k, v }) // (A) captures just the last values assigned to k and v from the range } for _, x := range l { k, v := x() fmt.Println(k, v) } }
Output
In lab1, the captured closures reference the final values from the loop instead of the expected individual values. In lab2, the captures still reference the final values because the created closure uses the same loop variables that are being referenced elsewhere in the outer scope. In lab3, the closures capture copies of the loop variables, so they accurately represent the individual values.
The above is the detailed content of How Does Go Handle Captured Loop Variables in Closures, and Why Does it Matter?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.
