When performing a calculation on a column in a Pandas DataFrame using the groupby() function, it's often necessary to incorporate the results back into the DataFrame. One way to achieve this is by creating a new column based on the grouped calculations.
In the provided example, the goal is to create a new column, Data4, that contains the sum of the Data3 column for each Date.
The code presented attempts to assign the grouped results directly to the new column, but it yields NaN values. To resolve this issue, the transform() method should be used instead:
df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum')
The transform() method returns a Series aligned to the index of the DataFrame, allowing it to be directly added as a new column. The 'sum' parameter specifies the calculation we want to perform.
The updated code below demonstrates the correct application of transform():
import pandas as pd df = pd.DataFrame({ 'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 'Data2': [11, 8, 10, 15, 110, 60, 100, 40], 'Data3': [5, 8, 6, 1, 50, 100, 60, 120] }) df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum') print(df)
The output of the modified code correctly calculates the sum of Data3 for each Date and adds the results to the DataFrame as the new column Data4:
Date Sym Data2 Data3 Data4 0 2015-05-08 aapl 11 5 55 1 2015-05-07 aapl 8 8 108 2 2015-05-06 aapl 10 6 66 3 2015-05-05 aapl 15 1 121 4 2015-05-08 aaww 110 50 55 5 2015-05-07 aaww 60 100 108 6 2015-05-06 aaww 100 60 66 7 2015-05-05 aaww 40 120 121
The above is the detailed content of How to Correctly Add a New Column to a Pandas DataFrame After a groupby().sum() Operation?. For more information, please follow other related articles on the PHP Chinese website!