


How Can I Expand Nested Lists in Pandas DataFrames into Separate Rows?
Unraveling Nested Lists in Pandas DataFrames: Row Expansion
When working with data in Pandas dataframes, you may encounter columns containing lists, potentially spanning multiple values. To facilitate analysis and manipulation, it becomes necessary to transform these lists into separate rows. This process, known as "long forming" or "row expansion," allows each list element to occupy its own row.
In order to achieve this, Pandas offers a dedicated method called .explode(), introduced in version 0.25. This method seamlessly transforms the specified list-containing column into a series of rows, with each element becoming an independent row.
Implementation:
To employ the .explode() method, simply specify the column name you wish to expand. By default, it will create new rows for each element within the column, while preserving the values in all other columns.
For example, consider a dataframe containing a 'samples' column with lists of values:
import pandas as pd import numpy as np df = pd.DataFrame( {'trial_num': [1, 2, 3, 1, 2, 3], 'subject': [1, 1, 1, 2, 2, 2], 'samples': [list(np.random.randn(3).round(2)) for i in range(6)] } )
Applying the .explode() method:
df.explode('samples')
Results in the following dataframe:
subject trial_num sample 0 1 1 0.57 1 1 1 -0.83 2 1 1 1.44 3 1 2 -0.01 4 1 2 1.13 5 1 2 0.36 6 2 1 -0.08 7 2 1 -4.22 8 2 1 -2.05 9 2 2 0.72 10 2 2 0.79 11 2 2 0.53
As you can observe, each list element now has its own row. It is worth noting that, although the method efficiently unrolls the lists, it does so for a single column at a time.
Additional Considerations:
- The .explode() method handles mixed columns containing both lists and scalar values, ensuring that empty lists and NaN values are preserved appropriately.
- If a dataframe has multiple list-containing columns, you can use nested .explode() calls to unroll them one by one.
- If you desire specific column ordering, you can manually readjust the column order after calling .explode().
- Resetting the index using .reset_index(drop=True) is recommended to obtain a regular integer index.
The above is the detailed content of How Can I Expand Nested Lists in Pandas DataFrames into Separate Rows?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H
