


How Can Multi-threading Improve C# Applications Accessing SQL Server Databases While Avoiding Deadlocks?
Multi-Threading C# Application with SQL Server Database Calls
When working with large datasets in SQL Server databases, multi-threading can significantly improve performance. One common challenge, however, is avoiding deadlocks when accessing and modifying data concurrently.
Background
The provided scenario involves a single-threaded application that processes records in a "main" table and related "child" tables, performing updates and insertions based on complex criteria. Although this approach is effective, it can be time-consuming for large datasets. To improve performance, the proposed solution aims to parallelize the processing using multiple threads.
Original Approach
The initial approach attempted to create a new data context for each batch of records from the "main" table. However, this led to deadlocks as threads stepped on each other's toes, attempting to add or update the same records simultaneously.
Multi-Threading with Task Parallel Library
To address the deadlock issue and improve performance, it's recommended to leverage the Task Parallel Library (TPL) and adopt a more centralized approach to handling data access. Here's how this can be implemented:
using (var dc = new TestDataContext()) { // Get all the ids of interest. // ... var problematicIds = new List<ErrorType>(); // Use TPL's Parallel.ForEach() to process ids in parallel. Parallel.ForEach(ids, new ParallelOptions {MaxDegreeOfParallelism = 8}, id => CalculateDetails(id, problematicIds)); }
In this code, the CalculateDetails method is called for each id in parallel, without the need for multiple data contexts. This minimizes the risk of deadlocks.
Deadlock Handling
To account for potential deadlocks caused by factors such as insufficient indexes or high concurrency, a deadlock retry helper class can be employed. This class can handle deadlocks and automatically retry a certain number of times before failing with an exception.
Partitioning Strategy
If partitioning is feasible, dividing the data into distinct sets can prevent deadlocks altogether. Each partition can be processed independently in its own thread. This eliminates the possibility of contention for locks on the same data.
Conclusion
Optimizing the performance of multi-threaded applications with SQL Server database calls requires careful handling of deadlocks. Using TPL, implementing deadlock handling mechanisms, and leveraging partitioning strategies can significantly improve performance and ensure efficient and reliable data access.
The above is the detailed content of How Can Multi-threading Improve C# Applications Accessing SQL Server Databases While Avoiding Deadlocks?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.
