Home > Database > Mysql Tutorial > How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?

How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?

DDD
Release: 2024-12-22 09:41:57
Original
739 people have browsed it

How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?

SQL Row Number Equivalent in Spark RDD

In Spark, obtaining a row number equivalent to SQL's row_number() over (partition by ... order by ...) for an RDD can be achieved using Spark 1.4's enhanced functionality.

Solution:

  1. Create a Test RDD:
val sample_data = Seq(((3, 4), 5, 5, 5),
((3, 4), 5, 5, 9),
((3, 4), 7, 5, 5),
((1, 2), 1, 2, 3),
((1, 2), 1, 4, 7),
((1, 2), 2, 2, 3))

val temp1 = sc.parallelize(sample_data)
Copy after login
  1. Partition by Key and Order:

Utilize the rowNumber() function introduced in Spark 1.4 to create a partitioned window:

import org.apache.spark.sql.expressions.Window

val partitionedRdd = temp1
  .map(x => (x._1, x._2._1, x._2._2, x._2._3))
  .groupBy(_._1)
  .mapGroups((_, entries) =>
    entries.toList
      .sortBy(x => (x._2, -x._3, x._4))
      .zipWithIndex
      .map(x => (x._1._1, x._1._2, x._1._3, x._1._4, x._2 + 1))
  )
Copy after login
  1. Output the Result:
partitionedRdd.foreach(println)

// Example output:
// ((1,2),1,4,7,1)
// ((1,2),1,2,3,2)
// ((1,2),2,2,3,3)
// ((3,4),5,5,5,4)
// ((3,4),5,5,9,5)
// ((3,4),7,5,5,6)
Copy after login

The above is the detailed content of How to Simulate SQL's `ROW_NUMBER()` Function in Spark RDD?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template