Final Array State After K Multiplication Operations I
3264. Final Array State After K Multiplication Operations I
Difficulty: Easy
Topics: Array, Math, Heap (Priority Queue), Simulation
You are given an integer array nums, an integer k, and an integer multiplier.
You need to perform k operations on nums. In each operation:
- Find the minimum value x in nums. If there are multiple occurrences of the minimum value, select the one that appears first.
- Replace the selected minimum value x with x * multiplier.
Return an integer array denoting the final state of nums after performing all k operations.
Example 1:
- Input: nums = [2,1,3,5,6], k = 5, multiplier = 2
- Output: [8,4,6,5,6]
- Explanation:
| Operation | Result |
|-------------------|-----------------|
| After operation 1 | [2, 2, 3, 5, 6] |
| After operation 2 | [4, 2, 3, 5, 6] |
| After operation 3 | [4, 4, 3, 5, 6] |
| After operation 4 | [4, 4, 6, 5, 6] |
| After operation 5 | [8, 4, 6, 5, 6] |
Example 2:
- Input: nums = [1,2], k = 3, multiplier = 4
- Output: [16,8]
- Explanation:
| Operation | Result |
|-------------------|-----------------|
| After operation 1 | [2, 2, 3, 5, 6] |
| After operation 2 | [4, 2, 3, 5, 6] |
| After operation 3 | [4, 4, 3, 5, 6] |
| After operation 4 | [4, 4, 6, 5, 6] |
| After operation 5 | [8, 4, 6, 5, 6] |
Constraints:
- 1 <= nums.length <= 100
- 1 <= nums[i] <= 100
- 1 <= k <= 10
- 1 <= multiplier <= 5
Hint:
- Maintain sorted pairs (nums[index], index) in a priority queue.
- Simulate the operation k times.
Solution:
We need to implement the operations as described in the problem statement. The key steps are to find the minimum value in the array, replace it with the value multiplied by the given multiplier, and then repeat this process k times.
Given that we need to select the first occurrence of the minimum value and replace it, we can approach this by keeping track of the index of the minimum value during each operation. The PHP implementation will use a priority queue (min-heap) to efficiently retrieve and update the minimum value during each operation.
Let's implement this solution in PHP: 3264. Final Array State After K Multiplication Operations I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
Output:
1 |
|
Test Case 2:
Input:
1 2 3 |
|
Output:
1 |
|
Complexity
-
Time Complexity:
- For each of the k operations, finding the minimum value in the array requires O(n).
- Total: O(k x n), where n is the size of the array.
-
Space Complexity:
- The solution uses O(1) extra space.
This solution adheres to the constraints and provides the expected results for all test cases.
Contact Links
If you found this series helpful, please consider giving the repository a star on GitHub or sharing the post on your favorite social networks ?. Your support would mean a lot to me!
If you want more helpful content like this, feel free to follow me:
- GitHub
The above is the detailed content of Final Array State After K Multiplication Operations I. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JWT is an open standard based on JSON, used to securely transmit information between parties, mainly for identity authentication and information exchange. 1. JWT consists of three parts: Header, Payload and Signature. 2. The working principle of JWT includes three steps: generating JWT, verifying JWT and parsing Payload. 3. When using JWT for authentication in PHP, JWT can be generated and verified, and user role and permission information can be included in advanced usage. 4. Common errors include signature verification failure, token expiration, and payload oversized. Debugging skills include using debugging tools and logging. 5. Performance optimization and best practices include using appropriate signature algorithms, setting validity periods reasonably,

Session hijacking can be achieved through the following steps: 1. Obtain the session ID, 2. Use the session ID, 3. Keep the session active. The methods to prevent session hijacking in PHP include: 1. Use the session_regenerate_id() function to regenerate the session ID, 2. Store session data through the database, 3. Ensure that all session data is transmitted through HTTPS.

RESTAPI design principles include resource definition, URI design, HTTP method usage, status code usage, version control, and HATEOAS. 1. Resources should be represented by nouns and maintained at a hierarchy. 2. HTTP methods should conform to their semantics, such as GET is used to obtain resources. 3. The status code should be used correctly, such as 404 means that the resource does not exist. 4. Version control can be implemented through URI or header. 5. HATEOAS boots client operations through links in response.

The main function of anonymous classes in PHP is to create one-time objects. 1. Anonymous classes allow classes without names to be directly defined in the code, which is suitable for temporary requirements. 2. They can inherit classes or implement interfaces to increase flexibility. 3. Pay attention to performance and code readability when using it, and avoid repeatedly defining the same anonymous classes.

In PHP, exception handling is achieved through the try, catch, finally, and throw keywords. 1) The try block surrounds the code that may throw exceptions; 2) The catch block handles exceptions; 3) Finally block ensures that the code is always executed; 4) throw is used to manually throw exceptions. These mechanisms help improve the robustness and maintainability of your code.

There are four main error types in PHP: 1.Notice: the slightest, will not interrupt the program, such as accessing undefined variables; 2. Warning: serious than Notice, will not terminate the program, such as containing no files; 3. FatalError: the most serious, will terminate the program, such as calling no function; 4. ParseError: syntax error, will prevent the program from being executed, such as forgetting to add the end tag.

In PHP, the difference between include, require, include_once, require_once is: 1) include generates a warning and continues to execute, 2) require generates a fatal error and stops execution, 3) include_once and require_once prevent repeated inclusions. The choice of these functions depends on the importance of the file and whether it is necessary to prevent duplicate inclusion. Rational use can improve the readability and maintainability of the code.

PHP and Python each have their own advantages, and choose according to project requirements. 1.PHP is suitable for web development, especially for rapid development and maintenance of websites. 2. Python is suitable for data science, machine learning and artificial intelligence, with concise syntax and suitable for beginners.
