When attempting to create a new column in a DataFrame from the results of a groupby sum operation using pandas, some users encounter NaN values in the new column. The primary issue arises when trying to assign group-specific sums to individual rows.
The key to resolving this issue is to employ the transform function, which returns a Series with its index aligned to the DataFrame. By using transform, you can add the result as a new column to your DataFrame.
Consider the following code snippet:
import pandas as pd df = pd.DataFrame({ 'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 'Data2': [11, 8, 10, 15, 110, 60, 100, 40], 'Data3': [5, 8, 6, 1, 50, 100, 60, 120] }) df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum') print(df)
Output:
Date Sym Data2 Data3 Data4 0 2015-05-08 aapl 11 5 55 1 2015-05-07 aapl 8 8 108 2 2015-05-06 aapl 10 6 66 3 2015-05-05 aapl 15 1 121 4 2015-05-08 aaww 110 50 55 5 2015-05-07 aaww 60 100 108 6 2015-05-06 aaww 100 60 66 7 2015-05-05 aaww 40 120 121
As illustrated, each row in the new column, Data4, now reflects the sum of Data3 values for the corresponding date group, effectively addressing the initial problem of NaN values.
The above is the detailed content of How to Avoid NaN Values When Adding Grouped Sums as a New Column in Pandas?. For more information, please follow other related articles on the PHP Chinese website!