Home Backend Development C++ Push_back vs. Emplace_back: When Should You Use Each in C ?

Push_back vs. Emplace_back: When Should You Use Each in C ?

Dec 23, 2024 am 09:47 AM

Push_back vs. Emplace_back: When Should You Use Each in C  ?

Push_back vs Emplace_back: A Deeper Analysis

Introduction

The distinction between push_back and emplace_back operations in C is often a source of confusion. Both functions are used to insert elements into a container, but they differ in their behavior, especially when working with rvalue references.

Understanding Push_back

push_back has three overloads: one taking a const value, one taking an rvalue reference, and another that takes a variadic number of arguments (C 11 onwards). In the context of rvalue references, push_back(Type&& _Val) behaves as expected: it directly inserts the rvalue reference into the container without creating a copy.

Emergence of Emplace_back

Microsoft Visual C (MSVC) introduced a seemingly redundant version of emplace_back that takes an rvalue reference: emplace_back(Type&& _Val). This overload is redundant because it is functionally equivalent to push_back(Type&& _Val) when used with an rvalue reference.

The True Power of Emplace_back

The true potential of emplace_back lies in its variadic overload: emplace_back(Args&&...). Unlike push_back, this overload allows for direct construction of objects within a container using forwarded arguments. This eliminates the need for creating temporary objects and the potential for unnecessary copying.

When to Use Emplace_back

emplace_back is particularly useful in situations where creating temporary objects would incur significant overhead. For instance, when inserting a complex object into a standard map:

std::map<int, Complicated> m;
int anInt = 4;
double aDouble = 5.0;
std::string aString = "C++";

// Avoids creating temporary objects
m.emplace(4, anInt, aDouble, aString);
Copy after login

MSVC's Partial Implementation

Despite introducing a non-standard emplace_back overload for rvalue references, MSVC has not yet implemented the full variadic version. The reason behind this is the lack of variadic template support in Visual C 10 at the time.

The above is the detailed content of Push_back vs. Emplace_back: When Should You Use Each in C ?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C language data structure: data representation and operation of trees and graphs C language data structure: data representation and operation of trees and graphs Apr 04, 2025 am 11:18 AM

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth behind the C language file operation problem The truth behind the C language file operation problem Apr 04, 2025 am 11:24 AM

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

How do I use rvalue references effectively in C  ? How do I use rvalue references effectively in C ? Mar 18, 2025 pm 03:29 PM

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

How do I use move semantics in C   to improve performance? How do I use move semantics in C to improve performance? Mar 18, 2025 pm 03:27 PM

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

What are the basic requirements for c language functions What are the basic requirements for c language functions Apr 03, 2025 pm 10:06 PM

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values ​​to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

Function name definition in c language Function name definition in c language Apr 03, 2025 pm 10:03 PM

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

What are the differences and connections between c and c#? What are the differences and connections between c and c#? Apr 03, 2025 pm 10:36 PM

Although C and C# have similarities, they are completely different: C is a process-oriented, manual memory management, and platform-dependent language used for system programming; C# is an object-oriented, garbage collection, and platform-independent language used for desktop, web application and game development.

See all articles