We're given an array of unique integers and asked to generate all possible permutations. Two permutations are considered different if they differ in the order of the elements. For an array of length n, there are n! possible permutations.
The solution involves two main steps:
Using this approach, we can generate all permutations.
import java.util.ArrayList; import java.util.List; public class Permutation { public static List<List<Integer>> permute(int[] nums) { List<List<Integer>> result = new ArrayList<>(); permute(nums, 0, result); return result; } private static void permute(int[] nums, int startIndex, List<List<Integer>> result) { if (startIndex == nums.length - 1) { // Base case: If we reach the end of the array, add the current permutation to the result. List<Integer> permutation = new ArrayList<>(); for (int num : nums) { permutation.add(num); } result.add(permutation); } else { // Recursive case: Permute the remaining elements for each element at the current index. for (int i = startIndex; i < nums.length; i++) { swap(nums, startIndex, i); permute(nums, startIndex + 1, result); swap(nums, startIndex, i); } } } private static void swap(int[] nums, int i, int j) { int temp = nums[i]; nums[i] = nums[j]; nums[j] = temp; } }
int[] nums = {3, 4, 6, 2, 1}; List<List<Integer>> permutations = Permutation.permute(nums); for (List<Integer> permutation : permutations) { System.out.println(permutation); }
Output:
[3, 4, 6, 2, 1] [3, 4, 6, 1, 2] [3, 4, 2, 6, 1] [3, 4, 2, 1, 6] [3, 4, 1, 6, 2] [3, 4, 1, 2, 6] [3, 2, 6, 4, 1] [3, 2, 6, 1, 4] [3, 2, 4, 6, 1] [3, 2, 4, 1, 6] [3, 2, 1, 6, 4] [3, 2, 1, 4, 6] [3, 6, 4, 2, 1] [3, 6, 4, 1, 2] [3, 6, 2, 4, 1] [3, 6, 2, 1, 4] [3, 6, 1, 4, 2] [3, 6, 1, 2, 4] [6, 3, 4, 2, 1] [6, 3, 4, 1, 2] [6, 3, 2, 4, 1] [6, 3, 2, 1, 4] [6, 3, 1, 4, 2] [6, 3, 1, 2, 4] [6, 4, 3, 2, 1] [6, 4, 3, 1, 2] [6, 4, 2, 3, 1] [6, 4, 2, 1, 3] [6, 4, 1, 3, 2] [6, 4, 1, 2, 3] [2, 3, 6, 4, 1] [2, 3, 6, 1, 4] [2, 3, 4, 6, 1] [2, 3, 4, 1, 6] [2, 3, 1, 6, 4] [2, 3, 1, 4, 6] [2, 6, 3, 4, 1] [2, 6, 3, 1, 4] [2, 6, 4, 3, 1] [2, 6, 4, 1, 3] [2, 6, 1, 3, 4] [2, 6, 1, 4, 3] [4, 3, 6, 2, 1] [4, 3, 6, 1, 2] [4, 3, 2, 6, 1] [4, 3, 2, 1, 6] [4, 3, 1, 6, 2] [4, 3, 1, 2, 6] [4, 6, 3, 2, 1] [4, 6, 3, 1, 2] [4, 6, 2, 3, 1] [4, 6, 2, 1, 3] [4, 6, 1, 3, 2] [4, 6, 1, 2, 3] [1, 3, 6, 4, 2] [1, 3, 6, 1, 4] [1, 3, 4, 6, 1] [1, 3, 4, 1, 6] [1, 3, 1, 6, 4] [1, 3, 1, 4, 6] [1, 6, 3, 4, 2] [1, 6, 3, 1, 4] [1, 6, 4, 3, 1] [1, 6, 4, 1, 3] [1, 6, 1, 3, 4] [1, 6, 1, 4, 3] [2, 4, 3, 6, 1] [2, 4, 3, 1, 6] [2, 4, 6, 3, 1] [2, 4, 6, 1, 3] [2, 4, 1, 6, 3] [2, 4, 1, 3, 6] [2, 1, 4, 3, 6] [2, 1, 4, 1, 6] [2, 1, 6, 4, 3] [2, 1, 6, 1, 4] [2, 1, 3, 4, 6] [2, 1, 3, 1, 6] [6, 2, 4, 3, 1] [6, 2, 4, 1, 3] [6, 2, 1, 4, 3] [6, 2, 1, 3, 4] [6, 4, 2, 3, 1] [6, 4, 2, 1, 3] [6, 1, 2, 4, 3] [6, 1, 2, 1, 4] [6, 1, 4, 2, 3] [6, 1, 4, 1, 3] [6, 1, 3, 1, 4] [6, 1, 3, 4, 1] [4, 2, 6, 3, 1] [4, 2, 6, 1, 3] [4, 2, 1, 6, 3] [4, 2, 1, 3, 6] [4, 6, 2, 3, 1]
The above is the detailed content of How can I generate all possible permutations of an array of unique integers using a recursive approach?. For more information, please follow other related articles on the PHP Chinese website!